1. bookVolume 26 (2022): Edition 1 (January 2022)
Détails du magazine
Première parution
26 Mar 2010
2 fois par an
access type Accès libre

Life Cycle Sustainability Evaluation of Potential Bioenergy Development for Landfills in Colombia

Publié en ligne: 05 Jul 2022
Volume & Edition: Volume 26 (2022) - Edition 1 (January 2022)
Pages: 454 - 469
Détails du magazine
Première parution
26 Mar 2010
2 fois par an

The Colombian energy matrix faces significant changes toward meeting its energy needs while fulfilling its pledges in the Intended National Determined Contributions linked to the Paris Agreement. The country has developed a plan for energy transition with a 2050 horizon, a strategy reflected and supported by new legislative packages. Within its design, biomass and biomass waste play a vital role in bioenergy production; however, the benefits of deploying new bioenergy production facilities have not been fully accounted for, including only an economic and climate change perspective. In this work, a Life Cycle Sustainability Assessment of a potential bioenergy plant for industrial symbiosis with the largest landfill in the country is undertaken, avoiding environmental burden shifting between environmental damage categories and exposing the social potential of such projects. The results show how these types of projects are economically feasible and have the potential to boost the sustainable development of local communities, which under the Colombian context, have been structurally relegated from conventional economic growth for decades.


[1] Departamento Nacional de Planeacion (DNP). Informe anual de Avance en la implementacion de los ODS en Colombia (Annual progress report on the implementation of the SDGs in Colombia.). Bogota: DNP, 2020. (in Spanish) Search in Google Scholar

[2] Gobierno de Colombia. Actualizada Contribución Prevista Determinada a Nivel Nacional de la República de Colombia (Updated Predicted Nationally Determined Contribution of the Republic of Colombia.). Colombia: NBC, 2020. (in Spanish) Search in Google Scholar

[3] Colombian Ministry of Environment and Development. Colombia está comprometida con la acción climática global (Colombia is committed to global climate action.). Bogota: Ministerio de Ambiente y Desarrollo Sostenible, 2021. (in Spanish) Search in Google Scholar

[4] Colombian Congress. Law 1715. Bogota: UPME, 2014. (in Spanish) Search in Google Scholar

[5] Mining and Energy Ministery of Colombia. Transición energética: un legado para el presente y el futuro de Colombia. 2020. [Online]. [Accessed: 3 January 2022]. Available: https://www.minenergia.gov.co/libro-transicionenergetica#:~:text=En 2021%2C llegaremos a cerca,renovables en la matriz eléctrica Search in Google Scholar

[6] Camara de Comercio de Cali. Bioenergia Colombia. Bioenergia/Plan de Acción Cluster de Bioenergía del Valle del Cauca, 2022. [Online]. [Accessed 15 December 2021]. Available: https://www.ccc.org.co/wp-content/uploads/2019/08/Plan-de-accio%cc%81n-Bioenergi%cc%81a.pdf Search in Google Scholar

[7] Unidad de Planeación Minero-Energética (UPME). Plan Indicativo de Expansión de Cobertura de Energía Eléctrica 2016-2020 (Indicative Plan for the Expansion of Electricity Coverage 2016-2020.). Bogota: UPME, 2016. (in Spanish) Search in Google Scholar

[8] INERCO Consultoría Colombia. Valorización Energética De Residuos: Proyecto WTE Colombia. Bogota: UPME, 2018. (in Spanish) Search in Google Scholar

[9] Meneses-Jácome A., et al. LCA applied to elucidate opportunities for biogas from wastewaters in Colombia. Water Sci. Technol. 2015:71(2):211–219. https://doi.org/10.2166/wst.2014.47725633944 Search in Google Scholar

[10] Guedes Cubas do Amaral K., Mansur Aisse M., Collere Posetti G. R. Sustainability assessment of sludge and biogas management in wastewater treatment plants using the LCA technique. Ambiente & Agua 2019:14(5):1–14. https://doi.org/10.4136/ambi-agua.2371 Search in Google Scholar

[11] Caicedo-Concha D. M., et al. The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia. Cogent Eng. 2019:6(1):1–15. https://doi.org/10.1080/23311916.2019.1664862 Search in Google Scholar

[12] Contreras M. D., et al. A look to the biogas generation from organic wastes in Colombia. Int. J. Energy Econ. Policy 2020:10(5):248–254. https://doi.org/10.32479/ijeep.9639 Search in Google Scholar

[13] Meneses-Jácome A., et al. Sustainable Energy from agro-industrial wastewaters in Latin-America. Renew. Sustain. Energy Rev. 2016:56:1249–1262. https://doi.org/10.1016/j.rser.2015.12.036 Search in Google Scholar

[14] Guevara P. Red Iberoamericana de Aprovechamiento de Residuos Organicos en Produccion de Energia. Bioenergía: Fuentes, conversion y sustentabilidad (Iberoamerican Program for the Use of Organic Residues in Energy Production, Bioenergy: Sources, conversion and sustainability.). Bogota: Tescol, 2014. (in Spanish) Search in Google Scholar

[15] Unidad de Planeación Minero Energética (UPME). Guia práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014 (Practical guide for the application of the tax incentives of Law 1715 of 2014.). Bogota: UPME, 2014. (in Spanish) Search in Google Scholar

[16] Colombian Congress. Law 2099 of July 10th 2021. Bogota: UPME, 2021. (in Spanish) Search in Google Scholar

[17] Unidad de Planeación Minero-Energética (UPME). Atlas of the energy potential of residual biomass in Colombia. 2020 [Online]. [Accessed 09.02.2022]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energeticode-la-biomasa.aspx#googtrans/gl/en Search in Google Scholar

[18] Velásquez M. E., Rincón J. M. Estimación del potencial de conversión a biogás de la biomasa en Colombia y su aprovechamiento (Estimation of the biomass conversion potential to biogas in Colombia and its use.). Bogota: UPME, 2018. (in Spanish) Search in Google Scholar

[19] Camara de Comercio de Cali. El poder de la bioenergía en la competitividad el Valle del Cauca (The power of bioenergy in the competitiveness of Valle del Cauca.). Cali, 2018. (in Spanish) Search in Google Scholar

[20] Ministerio de Minas y Energía (República de Colombia). Boletín estadístico de minas y energía 2016 – 2020 (Statistical bulletin of mines and energy 2016 – 2020.). Bogota: UPME, 2021. (in Spanish) Search in Google Scholar

[21] Universidad del Rosario. DOÑA JUANA. Un vecino incómodo (DOÑA JUANA. an awkward neighbor.). Bogota: UR, 2018. (in Spanish) Search in Google Scholar

[22] Universidad Externado de Colombia. Relleno sanitario Doña Juana ¿una solución llena de problemas? (Doña Juana landfill, a solution full of problems?) Bogota: UEC, 2019. (in Spanish) Search in Google Scholar

[23] Consorcio Relleno Sanitario Nuevo Mondonedo (New Mondoñedo Sanitary Landfill Consortium.). 2020 [Online]. [Accessed 24.01.2022]. Available: https://nuevomondonedo.com/ Search in Google Scholar

[24] UNFCC. Nuevo Mondoñedo Landfill Gas Recovery, Flaring and Energy Production and Transformation for Leachate Evaporation. Project 10297, 2017 [Online]. [Accessed: 09.11.2021]. Available: https://cdm.unfccc.int/Projects/DB/ICONTEC1462894251.71/view Search in Google Scholar

[25] Rogmans T., El-Jisr K. Designing Your Company’s Sustainability Report. Business and Society [Online]. [Accessed: 12.03.2022]. Available: https://hbr.org/2022/01/designing-your-companys-sustainability-report Search in Google Scholar

[26] Yue L., Ruojue L., Jingzheng R. Chapter 11- Fuzzy multicriteria decision making on ranking the biofuels production pathways. In Bioffuels for a more sustainable future. Life Cycle Sustainability Assessment and Multi-Criteria Decision Making 2020:317–325. https://doi.org/10.1016/B978-0-12-815581-3.00011-7 Search in Google Scholar

[27] Sala S. Chapter3- Triple bottom line, sustainability and sustainability assessment, an overview. In Bioffuels for a more sustainable future. Life Cycle Sustainability Assessment and Multi-Criteria Decision Making 2020:47–72. https://doi.org/10.1016/B978-0-12-815581-3.00003-8 Search in Google Scholar

[28] Mazzi A. Chapter 1- Introduction. Life cycle thinking. Life Cycle Sustainability Assessment for Decision-Making 2020:1–19. https://doi.org/10.1016/B978-0-12-818355-7.00001-4 Search in Google Scholar

[29] Toniolo S., et al. Chapter 3- Life cycle thinking tools: Life cycle assessment, life cycle costing and social life cycle assessment. In Life Cycle Sust. Assess. Decision-Making 2020:39–45. https://doi.org/10.1016/B978-0-12-818355-7.00003-8 Search in Google Scholar

[30] Rebitzer G., et al. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International 2004:30(5):701–720. https://doi.org/10.1016/j.envint.2003.11.00515051246 Search in Google Scholar

[31] Buxel H., Esenduran G., Griffin S. Strategic sustainability: Creating business value with life cycle analysis. Bus. Horiz. 2015:58(1):109–122. https://doi.org/10.1016/j.bushor.2014.09.004 Search in Google Scholar

[32] Bartolozzi I., Rizzi F., Frey M. Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renewable and Sustainable Energy Reviews 2017:80:408–420. https://doi.org/10.1016/j.rser.2017.05.231 Search in Google Scholar

[33] Jolliet O., et al. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. International Journal of Life Cycle Assessment 2003:8:324. https://doi.org/10.1007/BF02978505 Search in Google Scholar

[34] International Organization for Standardization. ISO 14044:2006 Environ. Manag. Life cycle assessement – Requirements and Guidelines. Geneva: ISO, 2006. Search in Google Scholar

[35] Ardolino F., Parrillo F., Arena U. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod. 2018:174:462–476. https://doi.org/10.1016/j.jclepro.2017.10.320 Search in Google Scholar

[36] Woon K. S., et al. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach. Waste Manag. 2016:50:290–299. https://doi.org/10.1016/j.wasman.2016.02.02226923298 Search in Google Scholar

[37] Kopsahelis A., et al. Life cycle assessment (LCA) of end-of-life dairy products (EoL-DPs) valorization via anaerobic co-digestion with agro-industrial wastes for biogas production. J. Chem. Technol. Biotechnol. 2019:94(11):3687–3697. https://doi.org/10.1002/jctb.6174 Search in Google Scholar

[38] Ardolino F., Arena U. Biowaste-to-Biomethane: An LCA study on biogas and syngas roads. Waste Manag. 2019:87:441–453. https://doi.org/10.1016/j.wasman.2019.02.03031109545 Search in Google Scholar

[39] Zhou H., et al. Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis. Renew. Energy 2021:176:565–578. https://doi.org/10.1016/j.renene.2021.05.007 Search in Google Scholar

[40] Vitázek I., et al. Thermodynamics of combustion gases from biogas. Res. Agric. Eng. 2016:62(1):8–13. https://doi.org/10.17221/34/2016-RAE Search in Google Scholar

[41] Yliopisto J. Evaluation of Potential Technologies and Operational Scales Reflecting Market Needs for Low-cost Gas Upgrading Systems. UK: VALORGAS, 2013. Search in Google Scholar

[42] Ryckebosch E., Drouillon M., Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy 2011:35(5):1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033 Search in Google Scholar

[43] Bauer F., et al. Biogas upgrading – Review of commercial technologies. 2013. Search in Google Scholar

[44] Stumm W., Morgan J. J. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd Edition. New York: Wiley, 1996. Search in Google Scholar

[45] Hullu S. S. J., Maassen J. Comparing different biogas upgrading techniques. Eidhoven: Eindhoven University of Technology, 2008. Search in Google Scholar

[46] Dragos D., Neamtu B. Sustainable Public Procurement: Life-Cycle Costing in the New EU Directive Proposal. Eur. Procure. Public Priv. Partnersh. Law Rev. 2013:8(1):19–30. https://doi.org/10.21552/epppl/2013/1/159 Search in Google Scholar

[47] Bejan A. Economies of Scale. Freedom and Evolution: Hierarchy in Nature, Society and Science. Cham: Springer International Publishing, 2020:13–20. https://doi.org/10.1007/978-3-030-34009-4 Search in Google Scholar

[48] Snegireva T., et al. Human potential in the system of sustainable development. E3S Web of Conferences 2019:134:03014. https://doi.org/10.1051/e3sconf/201913403014 Search in Google Scholar

[49] United Nations. The sustainable development goals report 2019. New York: UN, 2019. Search in Google Scholar

[50] Benoit-Norris C. The Methodological Sheets for Sub-Categories in Social Life Cycle Assessment (S-LCA). Pre Publ. Version. Methodol. Sheets Subcategories Soc. Life Cicle Assess (S-LCA), 2018:2. Search in Google Scholar

[51] UNEP Setac Life Cycle Initiative. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020. Management 2020:15(2). Search in Google Scholar

[52] Ruiz Restrepo M. A. Bioenergía, una alternativa energética sustentable para Colombia. Aplicación del Concepto Integrado de Sostenibilidad (ICoS) (Bioenergy, a sustainable energy alternative for Colombia. Application of the Integrated Concept of Sustainability.). Bogota: Universidad Nacional de Colombia, 2019. (in Spanish) Search in Google Scholar

[53] Goedkoop M., et al. Introduction to LCA with SimaPro. Amersfoort: PRe, 2016. Search in Google Scholar

[54] Wernet G., et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 2016:21(9):1218–1230. https://doi.org/10.1007/s11367-016-1087-8 Search in Google Scholar

[55] Humbert S., et al. IMPACT 2002 + : User Guide, 2002:21:42. Search in Google Scholar

[56] Diaz F., Pakere I., Romagnoli F. Life cycle assessment of low temperature district heating system in Gulbene region. Environ. Clim. Technol. 2020:24(2):285–299. https://doi.org/10.2478/rtuect-2020-0073 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo