Accès libre

Decreasing the Load of Air to Water Heat Pump Systems on Electrical Grids

À propos de cet article

Citez

[1] Maniraj B., Peer F., B. PV output power enhancement using whale optimization algorithm under normal and shading conditions. Int. J. Renew. Energy Res. 2020:10(3):1542–1543. https://doi.org/10.20508/ijrer.v10i3.11098.g803010.20508/ijrer.v10i3.11098.g8030 Search in Google Scholar

[2] Naveen R., Revankar P. P., Rajanna S. Integration of renewable energy systems for optimal energy needs-a review. Int. J. Renew. Energy Res. 2020:10(2):727–742. https://doi.org/10.20508/ijrer.v10i2.10571.g794410.20508/ijrer.v10i2.10571.g7944 Search in Google Scholar

[3] Aboina G., Tankari M. A., Tahir A. M., Lefebvre G. Analysis of the influences of internal heat loads on a solar heating system equipped with a heat pump. Int. J. Renew. Energy Res. 2020:10(3):1327–1333. https://doi.org/10.20508/ijrer.v10i3.10207.g800810.20508/ijrer.v10i3.10207.g8008 Search in Google Scholar

[4] Assadeg J., Alwaeli A. H. A., Sopian K., Moria H., Hamid A. S. A., Fudholi A. Solar assisted heat pump system for high quality drying applications: A critical review. Int. J. Renew. Energy Res. 2020:10(1):303–316. https://doi.org/10.20508/ijrer.v10i1.10403.g787610.20508/ijrer.v10i1.10403.g7876 Search in Google Scholar

[5] ElAlani O., Ghennioui H., Ghennioui A. Intra-day Variability Quantification from Ground-Based Measurements of Global Solar Irradiance. Int. J. Renew. Energy Res. 2020:10(4):1577–1587. https://doi.org/10.20508/ijrer.v10i4.11308.g804210.20508/ijrer.v10i4.11308.g8042 Search in Google Scholar

[6] Harrouz A., Colak I., Kayisli K. Control of a small wind turbine system application. 2016 IEEE Int. Conf. Renew. Energy Res. Appl. ICRERA 2016:5:1128–1133. https://doi.org/10.1109/ICRERA.2016.788450910.1109/ICRERA.2016.7884509 Search in Google Scholar

[7] Pihlap H., Annuk A., Lehtonen M., Muiste S., Tooming A., Allik A. A control method for increasing the heat usage efficiency of nearly-zero-energy buildings with heat pumps. Agron. Res. 2020:18(1):958–968. Search in Google Scholar

[8] Colak I., Sagiroglu S., Yesilbudak M. Data mining and wind power prediction: A literature review. Renew. Energy 2012:46:241–247. https://doi.org/10.1016/j.renene.2012.02.01510.1016/j.renene.2012.02.015 Search in Google Scholar

[9] Torregrosa-Jaime B., González B., Martínez P. J., Payá-Ballester G. Analysis of the operation of an aerothermal heat pump in a residential building using building information modelling. Energies 2018:11(7). https://doi.org/10.3390/en1107164210.3390/en11071642 Search in Google Scholar

[10] Yuan Y. Performance analysis of heat pump dryer with unit-room in cold climate regions. Energies 2019:12(16). https://doi.org/10.3390/en1216312510.3390/en12163125 Search in Google Scholar

[11] Estonian Ministry of Economics and Communication. Minimum requirements for energy performance. 2019:6:1–8. Search in Google Scholar

[12] FSK Heat Pumps and Air Conditioners. Air-to-Water Heat Pump Parameters. 2019. [Online].[Accessed: 15.03.2022]. Available: https://www.fsk.ee/ohk-vesisoojuspumbad/ohk-vesi-inverteriga-mudelid/869. Search in Google Scholar

[13] Thieblemont H., Haghighat F., Ooka R., Moreau A. Predictive control strategies based on weather forecast in buildings with energy storage system: A review of the state-of-the art. Energy Build. 2017:153:485–500. https://doi.org/10.1016/j.enbuild.2017.08.01010.1016/j.enbuild.2017.08.010 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other