1. bookVolume 26 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais
access type Accès libre

Passenger Transport Shift to Green Mobility – Assessment Using TIMES Model

Publié en ligne: 10 Jun 2022
Volume & Edition: Volume 26 (2022) - Edition 1 (January 2022)
Pages: 341 - 356
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais
Abstract

The transport sector accounts for about one-third of the final energy consumption in Latvia, most of which are fossil fuels in road transport. Fossil fuel consumption increases emissions and demands an immediate change in mobility habits to achieve climate neutrality by 2050. This paper focuses on the in-depth analyses of passenger transport by modelling the potential use of cleaner energy sources and the possible decrease of consumption through the modal shift. As travel modes differ for each distance, the study is done for three distances – short, medium and long. Three scenarios have been analysed – BASE scenario including existing measures and taxation policy, NECP scenario including measures defined in the National Energy and Climate Plan until 2030 and GHG TARGET scenario aiming to achieve climate neutrality by 2050. The proposed modelling approach allows for the development and evaluation of the effectiveness of existing and planned measures in greening mobility. Results proved the need for immediate action and a change in the mobility habits of the population to achieve climate neutrality by 2050.

Keywords

[1] Intergovernmental Panel on Climate Change, Climate Change 2014 Mitigation of Climate Change. Cambridge University Press, 2015. https://doi.org/10.1017/CBO978110741541610.1017/CBO9781107415416 Search in Google Scholar

[2] D-ulal H. B., Brodnig H. B., Onoriose C. G. Climate change mitigation in the transport sector through urban planning: A review. Habitat Int. 2011:35(3):494–500. https://doi.org/10.1016/j.habitatint.2011.02.00110.1016/j.habitatint.2011.02.001 Search in Google Scholar

[3] European Commission. Sustainable and Smart Mobility Strategy – putting European transport on track for the future. Eur. Comm. Commun. 2020:10:1–50. [Online]. [Accessed: 15.04.2022]. Available: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12438-Sustainable-and-Smart-Mobility-Strategy. Search in Google Scholar

[4] EC, EU transport in figures Statistical pocketbook 2020. 2020. Search in Google Scholar

[5] Lerede D., Pinto G., Saccone M., Bustreo C., Capozzoli A., Savoldi L. Application of a Stochastic Multicriteria Acceptability Analysis to support decision-making within a macro-scale energy model : A case study of the electric fication of the road European transport sector. Energy 2021:236:121444. https://doi.org/10.1016/j.energy.2021.12144410.1016/j.energy.2021.121444 Search in Google Scholar

[6] Ramea K., Bunch D. S., Yang C., Yeh S., Ogden J. M. Integration of behavioural effects from vehicle choice models into long-term energy systems optimization models. Energy Econ. 2018:74:663–676. https://doi.org/10.1016/j.eneco.2018.06.02810.1016/j.eneco.2018.06.028 Search in Google Scholar

[7] Salvucci R., Gargiulo M., Karlsson K. The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic. Applied Energy 2019:253:113593. https://doi.org/10.1016/j.apenergy.2019.11359310.1016/j.apenergy.2019.113593 Search in Google Scholar

[8] Tattini J., Gargiulo M., Karlsson K. Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework. Energy Policy 2017:113:571–583. https://doi.org/10.1016/j.enpol.2017.11.01310.1016/j.enpol.2017.11.013 Search in Google Scholar

[9] Salvucci R., Tattini J., Gargiulo M., Lehtilä A., Karlsson K. Modelling transport modal shift in TIMES models through elasticities of substitution. Applied Energy 2018:232:740–751, 2018. https://doi.org/10.1016/j.apenergy.2018.09.08310.1016/j.apenergy.2018.09.083 Search in Google Scholar

[10] Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. https://doi.org/10.1016/j.egypro.2018.07.03610.1016/j.egypro.2018.07.036 Search in Google Scholar

[11] Barisa A., Rosa M. A system dynamics model for CO2 emission mitigation policy design in road transport sector. Energy Procedia 2018:147:419–427. https://doi.org/10.1016/j.egypro.2018.07.11210.1016/j.egypro.2018.07.112 Search in Google Scholar

[12] Barisa A., Kirsanovs V., Safronova A. Future transport policy designs for biomethane promotion: A system Dynamics model. J. Environ. Manage. 2020:269:110842. https://doi.org/10.1016/j.jenvman.2020.11084210.1016/j.jenvman.2020.11084232561023 Search in Google Scholar

[13] Alirezaei M., Onat N., Tatari O., Abdel-Aty M. The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understan ding Complex Interdependencies. Systems 2017:5(1):0006. https://doi.org/10.3390/systems501000610.3390/systems5010006 Search in Google Scholar

[14] Shafiei E., Davidsdottir B., Leaver J., Stefansson H., Asgeirsson E. I. Simulation of alternative fuel markets using integrated system dynamics model of energy system. Procedia Comput. Sci. 2015:51(1):513–521. https://doi.org/10.1016/j.procs.2015.05.27710.1016/j.procs.2015.05.277 Search in Google Scholar

[15] Shafiei E., Davidsdottir B., Leaver J., Stefansson H., Asgeirsson E. I., Keith D. R. Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system. Energy 2016:94:409–421. https://doi.org/10.1016/j.energy.2015.11.01310.1016/j.energy.2015.11.013 Search in Google Scholar

[16] Fiorello D., Fermi F., Bielanska D. The ASTRA model for strategic assessment of transport policies. Syst. Dyn. Transp. 2010:26(3):283–290. https://doi.org/10.1002/sdr.45210.1002/sdr.452 Search in Google Scholar

[17] Astegiano P., Fermi F., Martino A. Investigating the impact of e-bikes on modal share and greenhouse emissions: A system dynamic approach. Transp. Res. Procedia 2018:37:163–170. https://doi.org/10.1016/j.trpro.2018.12.17910.1016/j.trpro.2018.12.179 Search in Google Scholar

[18] Nunes P., Pinheiro F., Brito M. C. The effects of environmental transport policies on the environment, economy and employment in Portugal. J. Clean. Prod. 2019:213:428–439. https://doi.org/10.1016/j.jclepro.2018.12.16610.1016/j.jclepro.2018.12.166 Search in Google Scholar

[19] Schade W. et al. The impact of TEN-T completion on growth, jobs and the environment. 2018. Search in Google Scholar

[20] Ecorys. Study on exploring the possible employment implications of connected and automated driving Draft Final Report. 2020. Search in Google Scholar

[21] Möst D., Schreiber S., Herbst A., Jakob M., Poganietz A. M. W. The Future European Energy System. 2021. https://doi.org/10.1007/978-3-030-60914-610.1007/978-3-030-60914-6 Search in Google Scholar

[22] Chen Z., Daito N., Gifford J. L. Socioeconomic impacts of transportation public-private partnerships: A dynamic CGE assessment. Transp. Policy 2017:58:80–87. https://doi.org/10.1016/j.tranpol.2017.05.00210.1016/j.tranpol.2017.05.002 Search in Google Scholar

[23] Cardenete M. A., López-Cabaco R. Economic and environmental impact of the new Mediterranean Rail Corridor in Andalusia: A dynamic CGE approach. Transp. Policy 2021:102:25–34. https://doi.org/10.1016/j.tranpol.2020.12.00710.1016/j.tranpol.2020.12.007 Search in Google Scholar

[24] Dixon P. B., Rimmer M. T., Waschik R. Linking CGE and specialist models: Deriving the implications of highway policy using USAGE-Hwy. Econ. Model. 2017:66:1–18. https://doi.org/10.1016/j.econmod.2017.04.02210.1016/j.econmod.2017.04.022 Search in Google Scholar

[25] Central Statistical Bureau. Energy balance, TJ, (NACE Rev.2). [Online]. Transport and GHG emissions: trends 2050. 2021. [Online]. Available: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__EN__ENB/ENB06 Search in Google Scholar

[26] Capros P., De Vita A., Tasios N., Siskos P., Kannavou M., Al E. EU reference scenario 2020 : energy, transport and GHG emissions: trends to 2050. 2021. [Online]. [Accessed: 15 March 2022]. Available: https://data.europa.eu/doi/10.2833/35750 Search in Google Scholar

[27] Central Statistical Bureau of Latvia. Travel distance and time of population of Latvia. 2018, [Online]. [Accessed: 15 March 2022]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/passenger-traffic/press-releases/1753-latvijas-iedzivotaju. Search in Google Scholar

[28] Central Statistical Bureau of Latvia. Average prices of energy resources for final consumers (excluding VAT). [Online]. [Accessed: 15 March 2022]. Available: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__EN__ENC/ENC010/. Search in Google Scholar

[29] Saema, The Parliament of the Republic of Latvia. Law On Excise Duties. Latvijas Vestnesis 2003:161. Search in Google Scholar

[30] Saema, The Parliament of the Republic of Latvia. Natural Resources Tax Law. Latvijas Vestnesis 2005:209. Search in Google Scholar

[31] The Central Finance and Contracting Agency. EU Funds. 2021. Search in Google Scholar

[32] Ministry of Economics. Latvian National Energy and Climate Plan 2021–2030. [Online]. [Accessed: 6 March 2022]. Available: https://em.gov.lv/files/nozares_politika/LATVIA_NECP2021-2030_PROJECT_19122018.docx. Search in Google Scholar

[33] Allena Ozolina S. et al. Can Energy Sector Reach Carbon Neutrality with Biomass Limitations? Energy 2022:249:123797. https://doi.org/10.1016/j.energy.2022.12379710.1016/j.energy.2022.123797 Search in Google Scholar

[34] Ministry of Environmental Protection and Regional Development. Informative Report Strategy of Latvia for the Achievement of Climate Neutrality by 2050, Table of Contents. 2020. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo