Accès libre

Investigating diverse photogrammetric techniques in the hazard assessment of historical sites of the Museum of the Coal Basin Area in Będzin, Poland

, ,  et   
26 sept. 2024
À propos de cet article

Citez
Télécharger la couverture

Baca, M., Muszyński, Z., Rybak, J., and Żyrek, T. (2015). The application of geodetic methods for displacement control in the self-balanced pile capacity testing instrument. In Advances and trends in engineering sciences and technologies: proceedings of the International Conference on Engineering Sciences and Technologies, Tatranská Štrba, Slovakia, pages 15–20. Search in Google Scholar

Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3):83–94, doi:10.1016/s0924-2716(99)00014-3. Search in Google Scholar

Baselga, S., Garrigues, P., Berné, J. L., Anquela, A. B., and Martín, A. (2011). Deformation monitoring in historic buildings: A case study. Survey Review, 43(323):484–492, doi:10.1179/003962611x13117748891912. Search in Google Scholar

Bolognesi, M., Furini, A., Russo, V., Pellegrinelli, A., and Russo, P. (2014). Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–5:113–119, doi:10.5194/isprsarchives-xl-5-113-2014. Search in Google Scholar

Buill, F., Núñez-Andrés, M. A., Costa-Jover, A., Moreno, D., Puche, J. M., and Macias, J. M. (2020). Terrestrial Laser Scanner for the formal assessment of a Roman-Medieval structure – The cloister of the cathedral of Tarragona (Spain). Geosciences, 10(11):427, doi:10.3390/geosciences10110427. Search in Google Scholar

Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T., and Janicka, J. (2023). Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement, 219:113286, doi:10.1016/j.measurement.2023.113286. Search in Google Scholar

Chen, M.-C., Wang, K., and Xie, L. (2013). Deterioration mechanism of cementitious materials under acid rain attack. Engineering Failure Analysis, 27:272–285, doi:10.1016/j.engfailanal.2012.08.007. Search in Google Scholar

Corradetti, A., Seers, T., Billi, A., and Tavani, S. (2021). Virtual outcrops in a pocket: The smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today, 31(9):4–9, doi:10.1130/gsatg506a.1. Search in Google Scholar

Di Stefano, F., Cabrelles, M., García-Asenjo, L., Lerma, J. L., Malinverni, E. S., Baselga, S., Garrigues, P., and Pierdicca, R. (2020). Evaluation of long-range mobile mapping system (MMS) and close-range photogrammetry for deformation monitoring. A case study of Cortes de Pallás in Valencia (Spain). Applied Sciences, 10(19):6831, doi:10.3390/app10196831. Search in Google Scholar

Fawzy, H. E.-D. (2019). Study the accuracy of digital close range photogrammetry technique software as a measuring tool. Alexandria Engineering Journal, 58(1):171–179, doi:10.1016/j.aej.2018.04.004. Search in Google Scholar

Gairns, C. (2008). Development of a semi-automated system for structural deformation monitoring using a reflectorless total station. Master’s thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada. Search in Google Scholar

Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A. (2021). Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129. Search in Google Scholar

Jaud, M., Kervot, M., Delacourt, C., and Bertin, S. (2019). Potential of smartphone SfM photogrammetry to measure coastal morpho-dynamics. Remote Sensing, 11(19):2242, doi:10.3390/rs11192242. Search in Google Scholar

Jigyasu, R. (2005). Towards developing methodology for integrated risk management of cultural heritage sites and their settings. In 15th ICOMOS General Assembly and International Symposium: “Monuments and sites in their setting – conserving cultural heritage in changing townscapes and landscapes”, 17–21.10.2005, Xi’an, China. Search in Google Scholar

Karsznia, K. (2023). Innowacyjny system geomonitoringu do badania deformacji elementów powierzchniowych – IMS GEO (Innovative geomonitoring system for studying surface element deformations – IMS GEO). PRZEGLĄD GEODEZYJNY, 1(8):22–26, doi:10.15199/50.2023.08.3. Search in Google Scholar

Karsznia, K. (2024). Wykorzystanie wieloźródłowych danych przestrzennych do oceny stanu obiektów zabytkowych na terenach zagrożonych (using multi-source spatial data to assess the condition of historic buildings in endangered areas). PRZEGLĄD GEODEZYJNY, 1(2):38–42, doi:10.15199/50.2024.2.5. Search in Google Scholar

Lohani, B. and Ghosh, S. (2017). Airborne lidar technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4):567–579, doi:10.1007/s40010-017-0435-9. Search in Google Scholar

Markiewicz, J., Tobiasz, A., Kot, P., Muradov, M., Shaw, A., and Al-Shammaa, A. (2019). Review of surveying devices for structural health monitoring of cultural heritage buildings. In 2019 12th International Conference on Developments in eSystems Engineering (DeSE). IEEE, doi:10.1109/dese.2019.00113. Search in Google Scholar

Murtiyoso, A. and Grussenmeyer, P. (2017). Documentation of heritage buildings using close-range UAV images: dense matching issues, comparison and case studies. The Photogrammetric Record, 32(159):206–229, doi:10.1111/phor.12197. Search in Google Scholar

Museum of the Coal Basin (2024). Museum of the Coal Basin in Będzin. https://www.muzeumzaglebia.pl. Search in Google Scholar

Ornoch, L., Popielski, P., Olszewski, A., and Kasprzak, A. (2021). Ultrasonic sensors enabling early detection of emergency trends and analysis of structure inclination and stability by means of highly accurate level measurements. Sensors, 21(5):1789, doi:10.3390/s21051789. Search in Google Scholar

Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution – III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, (187):253–318. Search in Google Scholar

PGI (2024). Polish Geological Institute. https://geologia.pgi.gov.pl/arcgis. Search in Google Scholar

Piotrowski, J. and Kostyrko, K. (2012). Wzorcowanie aparatury pomiarowej (Calibration of measuring equipment). Wydawnictwo Naukowe PWN, Warszawa. Search in Google Scholar

Pix4D (2023). How can you know whether to use a drone or a terrestrial rover – the viDoc? One team compared the results of both to test the accuracy. https://www.pix4d.com/blog/comparing-vidoc-rtk-rover-p1-camera. Search in Google Scholar

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical recipes in C. Cambridge university press New York, NY. Search in Google Scholar

Sapirstein, P. (2016). Accurate measurement with photogrammetry at large sites. Journal of Archaeological Science, 66:137–145, doi:10.1016/j.jas.2016.01.002. Search in Google Scholar

Shevchenko, G. G., Bryn, M. J., Afonin, D. A., and Gura, D. A. (2020). Experimental Researches in Defining Deformations by Free Station Method and Results Processing by Search Method, pages 163–175. Springer Singapore, doi:10.1007/978-981-15-0454-9_17. Search in Google Scholar

Stec, K. (2007). Seismic hazard state in the Upper Silesian Coal Basin. Research Reports Mining and Environment, Quarterly, (3):55–75. Search in Google Scholar

Świerczyńska, E., Karsznia, K., Książek, K., Odziemczyk, W.,, and Smaczyński, M. (2023). Assessing the technical state of historical buildings using Terrestrial Laser Scanning and close-range aerial photogrammetry. In XVI International Scientific and Technical Conference entitled “Current Problems in Engineering Geodesy – Engineering Geodesy for the Development of a Sustainable Economy,” Poznań-Baranowo, 21–23.09.2023. Search in Google Scholar

Taylor, J. R. (1999). Wstęp do analizy błędu pomiarowego (Introduction to measurement error analysis). Search in Google Scholar

Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157. Search in Google Scholar

Woźniak, M. (2009). Bezreflektorowe systemy pomiarowe w monitorowaniu przemieszczeń (Reflectorless measurement systems for displacement monitoring). Technical Report 443, Instytut Techniki Budowlanej. Bezdotykowe metody obserwacji i pomiarów obiektów budowlanych. Instrukcje, wytyczne, poradniki. Search in Google Scholar

Woźniak, M. and Woźniak, K. (2020). MarQR technology for measuring relative displacements of building structure elements with regard to joints and cracks. Reports on Geodesy and Geoinformatics, 109(1):33–40, doi:10.2478/rgg-2020-0005. Search in Google Scholar

Woźniak, M., Świerczyńska, E., and Jastrzębski, S. (2015). The use of video-tacheometric technology for documenting and analysing geometric features of objects. Reports on Geodesy and Geoinformatics, 99(1):28–43, doi:10.2478/rgg-2015-0010. Search in Google Scholar

Xie, S., Qi, L., and Zhou, D. (2004). Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmospheric Environment, 38(27):4457–4466, doi:10.1016/j.atmosenv.2004.05.017. Search in Google Scholar

Zaczek-Peplinska, J. (2023). Pomiary inwetaryzacyjne z wykorzystaniem apple iphone 13 pro i zintegrowanej technologii lidar (Inventory measurements using Apple iPhone 13 Pro and integrated LiDAR technology). PRZEGLĄD GEODEZYJNY, 1(2):16–19, doi:10.15199/50.2023.02.1. Search in Google Scholar