[
Baca, M., Muszyński, Z., Rybak, J., and Żyrek, T. (2015). The application of geodetic methods for displacement control in the self-balanced pile capacity testing instrument. In Advances and trends in engineering sciences and technologies: proceedings of the International Conference on Engineering Sciences and Technologies, Tatranská Štrba, Slovakia, pages 15–20.
]Search in Google Scholar
[
Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3):83–94, doi:10.1016/s0924-2716(99)00014-3.
]Search in Google Scholar
[
Baselga, S., Garrigues, P., Berné, J. L., Anquela, A. B., and Martín, A. (2011). Deformation monitoring in historic buildings: A case study. Survey Review, 43(323):484–492, doi:10.1179/003962611x13117748891912.
]Search in Google Scholar
[
Bolognesi, M., Furini, A., Russo, V., Pellegrinelli, A., and Russo, P. (2014). Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–5:113–119, doi:10.5194/isprsarchives-xl-5-113-2014.
]Search in Google Scholar
[
Buill, F., Núñez-Andrés, M. A., Costa-Jover, A., Moreno, D., Puche, J. M., and Macias, J. M. (2020). Terrestrial Laser Scanner for the formal assessment of a Roman-Medieval structure – The cloister of the cathedral of Tarragona (Spain). Geosciences, 10(11):427, doi:10.3390/geosciences10110427.
]Search in Google Scholar
[
Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T., and Janicka, J. (2023). Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement, 219:113286, doi:10.1016/j.measurement.2023.113286.
]Search in Google Scholar
[
Chen, M.-C., Wang, K., and Xie, L. (2013). Deterioration mechanism of cementitious materials under acid rain attack. Engineering Failure Analysis, 27:272–285, doi:10.1016/j.engfailanal.2012.08.007.
]Search in Google Scholar
[
Corradetti, A., Seers, T., Billi, A., and Tavani, S. (2021). Virtual outcrops in a pocket: The smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today, 31(9):4–9, doi:10.1130/gsatg506a.1.
]Search in Google Scholar
[
Di Stefano, F., Cabrelles, M., García-Asenjo, L., Lerma, J. L., Malinverni, E. S., Baselga, S., Garrigues, P., and Pierdicca, R. (2020). Evaluation of long-range mobile mapping system (MMS) and close-range photogrammetry for deformation monitoring. A case study of Cortes de Pallás in Valencia (Spain). Applied Sciences, 10(19):6831, doi:10.3390/app10196831.
]Search in Google Scholar
[
Fawzy, H. E.-D. (2019). Study the accuracy of digital close range photogrammetry technique software as a measuring tool. Alexandria Engineering Journal, 58(1):171–179, doi:10.1016/j.aej.2018.04.004.
]Search in Google Scholar
[
Gairns, C. (2008). Development of a semi-automated system for structural deformation monitoring using a reflectorless total station. Master’s thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada.
]Search in Google Scholar
[
Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A. (2021). Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129.
]Search in Google Scholar
[
Jaud, M., Kervot, M., Delacourt, C., and Bertin, S. (2019). Potential of smartphone SfM photogrammetry to measure coastal morpho-dynamics. Remote Sensing, 11(19):2242, doi:10.3390/rs11192242.
]Search in Google Scholar
[
Jigyasu, R. (2005). Towards developing methodology for integrated risk management of cultural heritage sites and their settings. In 15th ICOMOS General Assembly and International Symposium: “Monuments and sites in their setting – conserving cultural heritage in changing townscapes and landscapes”, 17–21.10.2005, Xi’an, China.
]Search in Google Scholar
[
Karsznia, K. (2023). Innowacyjny system geomonitoringu do badania deformacji elementów powierzchniowych – IMS GEO (Innovative geomonitoring system for studying surface element deformations – IMS GEO). PRZEGLĄD GEODEZYJNY, 1(8):22–26, doi:10.15199/50.2023.08.3.
]Search in Google Scholar
[
Karsznia, K. (2024). Wykorzystanie wieloźródłowych danych przestrzennych do oceny stanu obiektów zabytkowych na terenach zagrożonych (using multi-source spatial data to assess the condition of historic buildings in endangered areas). PRZEGLĄD GEODEZYJNY, 1(2):38–42, doi:10.15199/50.2024.2.5.
]Search in Google Scholar
[
Lohani, B. and Ghosh, S. (2017). Airborne lidar technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4):567–579, doi:10.1007/s40010-017-0435-9.
]Search in Google Scholar
[
Markiewicz, J., Tobiasz, A., Kot, P., Muradov, M., Shaw, A., and Al-Shammaa, A. (2019). Review of surveying devices for structural health monitoring of cultural heritage buildings. In 2019 12th International Conference on Developments in eSystems Engineering (DeSE). IEEE, doi:10.1109/dese.2019.00113.
]Search in Google Scholar
[
Murtiyoso, A. and Grussenmeyer, P. (2017). Documentation of heritage buildings using close-range UAV images: dense matching issues, comparison and case studies. The Photogrammetric Record, 32(159):206–229, doi:10.1111/phor.12197.
]Search in Google Scholar
[
Museum of the Coal Basin (2024). Museum of the Coal Basin in Będzin. https://www.muzeumzaglebia.pl.
]Search in Google Scholar
[
Ornoch, L., Popielski, P., Olszewski, A., and Kasprzak, A. (2021). Ultrasonic sensors enabling early detection of emergency trends and analysis of structure inclination and stability by means of highly accurate level measurements. Sensors, 21(5):1789, doi:10.3390/s21051789.
]Search in Google Scholar
[
Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution – III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, (187):253–318.
]Search in Google Scholar
[
PGI (2024). Polish Geological Institute. https://geologia.pgi.gov.pl/arcgis.
]Search in Google Scholar
[
Piotrowski, J. and Kostyrko, K. (2012). Wzorcowanie aparatury pomiarowej (Calibration of measuring equipment). Wydawnictwo Naukowe PWN, Warszawa.
]Search in Google Scholar
[
Pix4D (2023). How can you know whether to use a drone or a terrestrial rover – the viDoc? One team compared the results of both to test the accuracy. https://www.pix4d.com/blog/comparing-vidoc-rtk-rover-p1-camera.
]Search in Google Scholar
[
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical recipes in C. Cambridge university press New York, NY.
]Search in Google Scholar
[
Sapirstein, P. (2016). Accurate measurement with photogrammetry at large sites. Journal of Archaeological Science, 66:137–145, doi:10.1016/j.jas.2016.01.002.
]Search in Google Scholar
[
Shevchenko, G. G., Bryn, M. J., Afonin, D. A., and Gura, D. A. (2020). Experimental Researches in Defining Deformations by Free Station Method and Results Processing by Search Method, pages 163–175. Springer Singapore, doi:10.1007/978-981-15-0454-9_17.
]Search in Google Scholar
[
Stec, K. (2007). Seismic hazard state in the Upper Silesian Coal Basin. Research Reports Mining and Environment, Quarterly, (3):55–75.
]Search in Google Scholar
[
Świerczyńska, E., Karsznia, K., Książek, K., Odziemczyk, W.,, and Smaczyński, M. (2023). Assessing the technical state of historical buildings using Terrestrial Laser Scanning and close-range aerial photogrammetry. In XVI International Scientific and Technical Conference entitled “Current Problems in Engineering Geodesy – Engineering Geodesy for the Development of a Sustainable Economy,” Poznań-Baranowo, 21–23.09.2023.
]Search in Google Scholar
[
Taylor, J. R. (1999). Wstęp do analizy błędu pomiarowego (Introduction to measurement error analysis).
]Search in Google Scholar
[
Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157.
]Search in Google Scholar
[
Woźniak, M. (2009). Bezreflektorowe systemy pomiarowe w monitorowaniu przemieszczeń (Reflectorless measurement systems for displacement monitoring). Technical Report 443, Instytut Techniki Budowlanej. Bezdotykowe metody obserwacji i pomiarów obiektów budowlanych. Instrukcje, wytyczne, poradniki.
]Search in Google Scholar
[
Woźniak, M. and Woźniak, K. (2020). MarQR technology for measuring relative displacements of building structure elements with regard to joints and cracks. Reports on Geodesy and Geoinformatics, 109(1):33–40, doi:10.2478/rgg-2020-0005.
]Search in Google Scholar
[
Woźniak, M., Świerczyńska, E., and Jastrzębski, S. (2015). The use of video-tacheometric technology for documenting and analysing geometric features of objects. Reports on Geodesy and Geoinformatics, 99(1):28–43, doi:10.2478/rgg-2015-0010.
]Search in Google Scholar
[
Xie, S., Qi, L., and Zhou, D. (2004). Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmospheric Environment, 38(27):4457–4466, doi:10.1016/j.atmosenv.2004.05.017.
]Search in Google Scholar
[
Zaczek-Peplinska, J. (2023). Pomiary inwetaryzacyjne z wykorzystaniem apple iphone 13 pro i zintegrowanej technologii lidar (Inventory measurements using Apple iPhone 13 Pro and integrated LiDAR technology). PRZEGLĄD GEODEZYJNY, 1(2):16–19, doi:10.15199/50.2023.02.1.
]Search in Google Scholar