À propos de cet article

Citez

Ahn, J. K., Moon, H. J. (2009). Changes in aqueous vascular endothelial growth factor and pigment epithelium-derived factor after ranibizumab alone or combined with verteporfin for exudative age-related macular degeneration. Amer. J. Ophthalmol., 148, 718–724.10.1016/j.ajo.2009.06.01219674731Search in Google Scholar

Anonymous (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 69, 89–95.Search in Google Scholar

Askou, A. L., Alsing, S., Benckendorff, J. N. E., Holmgaard, A., Mikkelsen, J. G., Aagaard, L., Bek, T., Corydon, T. J. (2019). Suppression of choroidal neovascularization by AAV-based dual-acting antiangiogenic gene therapy. Mol. Ther. Nucl. Acids, 16, 38–50.10.1016/j.omtn.2019.01.012639370730825671Search in Google Scholar

Bai, Y., Liang, S., Yu, W., Zhao, M., Huang, L., Zhao, M., Li, X. (2014). Semaphorin 3A blocks the formation of pathologic choroidal neovascularization induced by transforming growth factor beta. Mol. Vision, 20, 1258–1270.Search in Google Scholar

Bakri, N. M., Ramachandran, V., Kee, H. F., Subrayan, V., Isa, H., Ngah, N. F., Mohamad, N. A., Mooi, C. S., Mun, C. Y., Ismail, P., Ismail, F., Sukiman, E. S., Sulaiman, W. A. W. (2018). Copy number variation in VEGF gene as a biomarker of susceptibility to age-related macular degeneration. Egypt. J. Med. Hum. Gen.,19, 207–213.10.1016/j.ejmhg.2017.09.003Search in Google Scholar

Balne, P. K., Agrawal, R., Bijin, V., Lee, B., Ghosh, A., Sethy, S., Agrawal, M., Narayanan, R., Connolly, J. (2018). Dataset of plasma and aqueous humor cytokine profiles in patients with exudative age related macular degeneration and polypoidal choroidal vasculopathy. Data in Brief, 19, 1570–1573.10.1016/j.dib.2018.05.085614176530246075Search in Google Scholar

Berg, K., Pedersen, T. R., Sandvik, L., Bragadottir, R. (2015). Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS tret-and-extend protocol. Ophthalmology, 122, 146–152.10.1016/j.ophtha.2014.07.04125227499Search in Google Scholar

Betsholtz, C. (2004). Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev.,15, 215–228.10.1016/j.cytogfr.2004.03.00515207813Search in Google Scholar

Bhutto, I. A., McLeod, D. S., Hasegawa, T., Kim, S. Y., Merges, C., Tong, P., Lutty, G. A. (2006). Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp. Eye Res., 82 (1), 99–110.10.1016/j.exer.2005.05.007493284716019000Search in Google Scholar

Cabral, T., Lima, L. H., Mello, L. G. M., Polido, J., Correa, E. P., Oshima, A., Duong, J., Serracarbassa, P., Regatieri, C. V., Mahajan, V. B., Belfort, R. J. (2018). Bevacizumab injection in patients with neovascular age-related macular degeneration increases angiogenic biomarkers. Ophthalm. Retina, 2 (1), 31–37.10.1016/j.oret.2017.04.004578331429376143Search in Google Scholar

Castellino, N., Longo, A., Avitabile, T., Russo, A., Fallico, M., Bonfiglio, V., Toro, M. D., Rejdak, R., Nowomiejska, K., Murabito, P., Furino, C., Reibaldi, M. (2018). Circulating insulin-like growth factor-1: A new clue in the pathogenesis of age-related macular degeneration. Aging, 10 (12), 4241–4247.10.18632/aging.101727632664830594908Search in Google Scholar

Chakravarthy, U., Bailey, C., Brown, D., Campochiaro, P., Chittum, M., Csaky, K., Tufail, A., Yates, P., Cech, P., Giraudon, M., Delmar, P., Szczesny, P., Sahni, J., Boulay, A., Nagel, S., Fürst-Recktenwald, S., Schwab, D. (2017). Phase I trial of anti-vascular endothelial growth factor/anti-angiopoietin 2 bispecific antibody RG7716 for neovascular age-related macular degeneration. Ophthalmol. Retina, 1, 474–485.10.1016/j.oret.2017.03.00331047438Search in Google Scholar

Chen, L. J., Ma, L., Chu, W. K., Lai, T. Y. Y., Chen, H., Brelen, M. E., Rong, S. S., Young, A. L., Tam, P. O. S., Zhang, M., Pang, C. P. (2016). Identification of PGF as a new gene for neovascular age-related macular degeneration in a Chinese population. Invest. Ophthalmol. Vis. Sci.,57, 1714–1720.10.1167/iovs.IOVS-15-1867727064391Search in Google Scholar

Chiu, C. J., Conley, Y. P., Gorin, M. B., Gensler, G., Lai, C. Q., Shang, F., Taylor, A. (2011). Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 52, 9099–9107.10.1167/iovs.11-7782323196722058336Search in Google Scholar

Clemons, T. E., Milton, R. C., Klein, R., Seddon, J. M., Ferris, 3rd F. L. (2005). Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS). AREDS report No. 19. Ophthalmology,112, 533–539.Search in Google Scholar

Clijn, J. M., Buitendijk, G. H. S., Prokofyeva, E., Alves, D., Cachulo, M. L., Khawaja, A. P., Cougnard-Gregoire, A., Merle, B. M. J., Korb, C., Erke, M. G. et al. (2017). Prevalence of age-related macular degeneration in Europe. Ophthalmology, 124 (12), 1753–1763.10.1016/j.ophtha.2017.05.035575546628712657Search in Google Scholar

Evans, J. R., Fletcher, A. E., Wormald, R. P. (2004). Age-related macular degeneration causing visual impairment in people 75 years or older in Britain: An add-on study to the medical research council trial of assessment and management of older people in the community. Ophthalmology, 111, 513–517.10.1016/j.ophtha.2003.07.01215019328Search in Google Scholar

Fallah, A., Sadeghinia, A., Kahroba, H., Samadi, A., Heidari, H. R., Bradaran, B., Zeinali, S., Molavi, O. (2019). Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed. Pharmacother.,110, 775–785.10.1016/j.biopha.2018.12.02230554116Search in Google Scholar

Farnoodian, M., Wang, S., Dietz, J., Nickells, R. W., Sorenson, C. M., Sheibani, N. (2017). Negative regulators of angiogenesis: Important targets for treatment of exudative AMD. Clin. Sci. (Lond), 131 (15), 1763–1780.10.1042/CS20170066601684728679845Search in Google Scholar

Garcia-Garcia, L., Recalde, S., Hernandez, M., Bezunartea, J., Rodriguez-Madoz, J. R., Johnen, S., Diarra, S., Marie, C., Izsvak, Z., Ivics, Z. et al. (2017). Long-term PEDF release in rat iris and retinal epithelial cells after sleeping beauty transposon-mediated gene delivery. Mol. Ther. Nucl. Acids, 9, 1–11.10.1016/j.omtn.2017.08.001558339529246287Search in Google Scholar

Grassmann, F., Friedrich, U., Fauser, S., Schick, T., Milenkovic, A., Schulz, H. L., von Strachqitz, C. N., Bettecken, T., Lichtner, P., Meitinger, T., Arend, N., Wolf, A., Haritoglou, C., Rudolph, G., Chakravarthy, U. (2015). A candidate gene association study identifies DAPL1 as a female-specific susceptibility locus for age-related macular degeneration (AMD). NeuroMol. Med.,17 (2), 111–120.10.1007/s12017-015-8342-1441916225680934Search in Google Scholar

Gu, X., Yu, X., Dai, H. (2014). Intravitreal injection of ranibizumab for treatment of age-related macular degeneration: Effects on serum VEGF concentration. Curr. Eye Res.,39 (5), 518–521.10.3109/02713683.2013.84889924215127Search in Google Scholar

Gupta, D., Gupta, V., Singh, V., Chawla, S., Parveen, F., Agrawal, S., Phadke, S. R. (2014). Study of polymorphisms in CX3CR1, PLEKHA1 and VEGF genes as risk factors for age-related macular degeneration in Indian patients. Arch. Med. Res.,45, 489–494.10.1016/j.arcmed.2014.07.00525050486Search in Google Scholar

Huber, M., Wachtlin, J. (2012). Vitreous levels of proteins implicated in angiogenesis are modulated in patients with retinal or choroidal neovascularization. Ophthalmologica, 228, 188–193.10.1159/00033995222868384Search in Google Scholar

Huo, X., Li, Y., Jiang, Y., Sun, X., Gu, L., Guo, W., Sun, D. (2015). Inhibition of ocular neovascularization by co-inhibition of VEGF-A and PLGF. Cell Physiol. Biochem., 35, 1787–1796.10.1159/00037399025832861Search in Google Scholar

Jaffe, G. J., Ciulla, T. A., Ciardella, A. P., Devin, F., Dugel, P. U., Eandi, C. M., Masonson, H., Mones, J., Pearlman, J. A., Quaranta-El Maftouhi, M., Ricci, F., Westby, K., Patel, S. C. (2017). Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration. Ophthalmology,124, 224–234.10.1016/j.ophtha.2016.10.01028029445Search in Google Scholar

Kazlauskas, A. (2017). PDGFs and their receptors. Gene, 614, 1–7.10.1016/j.gene.2017.03.003672814128267575Search in Google Scholar

Kersten, E., Paun, C. C., Schellevis, R. L., Hoyng, C. B., Delcourt, C., Lengyel, I., Peto, T., Ueffing, M., Klaver, C. C. W., Dammeier, S., den Hollander, A. I., de Jong, E. K. (2018). Systemic and ocular fluid compunds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol., 63, 9–39.10.1016/j.survophthal.2017.05.00328522341Search in Google Scholar

Kim, J., Park, J. R., Choi, J., Park, I., Hwang, Y., Bae, H., Kim, Y., Choi, W., Yang, J. M., Han, S. et al. (2019). Tie2 activation promotes choriocapillary regeneration for alleviating neovascular age-related macular degeneration. Sci. Adv.,5, eaau6732.Search in Google Scholar

Kinnunen, K., Petrovski, G., Moe, M. C., Berta, A., Kaarniranta, K. (2012). Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol.,90, 299–309.10.1111/j.1755-3768.2011.02179.x22112056Search in Google Scholar

Lambert, N. C., El Shelmani, H., Singh, M. K., Mansergh, F. C., Wride, M. A., Padilla, M., Keegan, D., Hogg, R. E., Ambati, B. K. (2016). Risk factors and biomarkers of age-related macular degeneration. Progr. Retinal Eye Res.,54, 64–102.10.1016/j.preteyeres.2016.04.003499263027156982Search in Google Scholar

Lambert, N. G., Zhang, X., Rai, R. R., Uehara, H., Choi, S., Carroll, L. S., Das, S. K., Cahoon, J. M., Kirk, B. H., Bentley, B. M., Ambati, B. K. (2016). Subretinal AAV2.COMP-Ang1 suppresses choroidal neovascularization and vascular endothelial growth factor in a murine model of age-related macular degeneration. Exper. Eye Rese., 145, 248–257.10.1016/j.exer.2016.01.009586203826775053Search in Google Scholar

Li, R., Du, J. H., Yao, G. M., Yao, Y., Zhang, J. (2019). Autophagy: A new mechanism for regulating VEGF and PEDF expression in retinal pigment epithelium cells. Int. J. Ophthalmol., 12 (4), 557–562.Search in Google Scholar

Masli, S., Sheibani, N., Cursiefen, C., Zieske, J. (2014). Matricellular protein thrombospondin: Influence on ocular angiogenesis, wound healing and immuneregulation. Curr. Eye Res.,39 (8), 759–774.10.3109/02713683.2013.877936427864724559320Search in Google Scholar

Mesquita, J., Castro-de-Sousa, J. P., Vaz-Pereira, S., Neves, A., Passarinha, L. A., Tomaz, C. T. (2018). Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev., 39, 102–115.10.1016/j.cytogfr.2017.11.00529248329Search in Google Scholar

Mitchell, P., Liew, G., Gopinath, B., Wong, T. Y. (2018). Age-related macular degeneration. Lancet, 392, 1147–1159.10.1016/S0140-6736(18)31550-2Search in Google Scholar

Ng, D. S., Yip, Y. W., Bakthavatsalam, M., Chen, L. J., Ng, T. K., Lai, T. Y., Pang, C. P., Brelen, M. E. (2017). Elevated angiopoietin 2 in aqueous of patients with neovascular age related macular degeneration correlates with disease severity at presentation. Sci. Rep., 27 (7), 45081.Search in Google Scholar

Ng, E. W. M., Adamis, A. P. (2005). Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can. J. Ophthalmol., 40, 352–368.10.1016/S0008-4182(05)80078-XSearch in Google Scholar

Owen, C. G., Jarrar, Z., Wormald, R., Cook, D. G., Fletcher, A. E., Rudnicka, A. R. (2012). The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Brit. J. Ophthalmol., 96, 752–756.10.1136/bjophthalmol-2011-301109332963322329913Search in Google Scholar

Rakic, J. M., Lambert, V., Devy, L., Luttun, A., Carmeliet, P., Claes, C., Nguyen, L., Foidart, J. M., Noël, A., Munaut, C. (2003). Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci., 44, 3186–3193.10.1167/iovs.02-109212824270Search in Google Scholar

Rastogi, N., Smith, T. (2016). Association of age-related macular degeneration and reticular macular disease with cardiovascular disease. Surv. Ophthalmol., 61 (4), 422–433.10.1016/j.survophthal.2015.10.00326518628Search in Google Scholar

Rein, D. B., Wittenborn, J. S., Zhang, X., Honeycutt, A. A., Lesesne, S. B., Saaddine, J. (2009). Vision health cost-effectiveness study group. Forecasting age-related macular degeneration through the year 2050. Arch. Ophthalmol., 127 (4), 533–540.Search in Google Scholar

Rosenthal, R., Wohlleben, H., Malek, G., Schlichting, L., Thieme, H., Bowes Rickman, C., Strauss, O. (2004). Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration. Biochem. Biophys. Res. Commun., 323, 1203–1208.10.1016/j.bbrc.2004.08.21915451424Search in Google Scholar

Sall, J. W., Klisovic, D. D., O’Dorisio, M. S., Katz, S. E. (2004). Somatostatin inhibits IGF-1 mediated induction of VEGF in human retinal pigment epithelial cells. Exper. Eye Res.,79 (4), 465–476.10.1016/j.exer.2004.06.00715381031Search in Google Scholar

Storkebaum, E., Carmeliet, P. (2004). VEGF: A critical player in neurodegeneration. J. Clin. Invest., 113 (1), 14–18.10.1172/JCI2068230088814702101Search in Google Scholar

Tamhane, M., Cabrera-Ghayouri, S., Abelian, G., Viswanath, V. (2019). Review of biomarkers in ocular matrices: Challenges and opportunities. Pharm. Res., 36, 40.10.1007/s11095-019-2569-8634439830673862Search in Google Scholar

Tong, J. P., Chan, W. M., Liu, D. T. L., Lai, T. Y. Y., Choy, K. W., Pang, C. P., Lam, D. S. C. (2006). Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Amer. J. Ophthalmol., 141, 456–462.10.1016/j.ajo.2005.10.01216490490Search in Google Scholar

Tosi, G. M., Orlandini, M., Galvagni, F. (2018). The controversial role of TGF-ß in neovascular age-related macular degeneration pathogenesis. Int. J. Mol. Sci.,19, 3363.Search in Google Scholar

Tsai, D. C., Charng, M. J., Lee, F. L., Hsu, W. M., Chen, S. J. (2006). Different plasma levels of vascular endothelial growth factor and nitric oxide between patients with choroidal and retinal neovascularization. Ophthalmologica, 220 (4), 246–251.10.1159/000093079Search in Google Scholar

Van Bergen, T., Etienne, I., Cunningham, F., Moons, L., Schlingemann, R. O., Feyen, J. H. M., Stitt, A. W. (2019). The role of placental growth factor (PIGF) and its receptor system in retinal vascular diseases. Progr. Retinal Eye Res., 69, 116–136.10.1016/j.preteyeres.2018.10.006Search in Google Scholar

van Lookeren Campagne, M., LeCouter, J., Yaspan, B. L., Ye, W. (2014). Mechanisms of age-related macular degeneration and therapeutic opportunities. J. Pathol., 232, 151–164.10.1002/path.4266Search in Google Scholar

Wong, W. L., Su, X., Li, X., Cheung, C. M., Klein, R., Cheng, C. Y., Wong, T. Y. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Heal, 2, e106–e115.10.1016/S2214-109X(13)70145-1Search in Google Scholar

Zarranz-Ventura, J., Fernandez-Robredo, P., Recalde, S., Salinas-Alaman, A., Borras-Cuesta, F., Dotor, J., Garcia-Layana, A. (2013). Transforming growth factor-beta inhibition reduces progression of early choroidal neovascularization lesions in rats: P17 and P144 peptides. PLoS ONE, 8 (5), e65434.10.1371/journal.pone.0065434366924923741494Search in Google Scholar

Zehetner, C., Kirchmair, R., Neururer, S. B., Kralinger, M. T., Bechrakis, N. E., Kieselbach, G. F. (2014). Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest. Ophthalmol. Vis. Sci., 55, 337–344.10.1167/iovs.13-1297824334449Search in Google Scholar

eISSN:
1407-009X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
General Interest, Mathematics, General Mathematics