Accès libre

Improvement of the Cargo Fleet Vessels Power Plants Ecological Indexes by Development of the Exhaust Gas Systems

À propos de cet article

Citez

1. MARPOL 73/78 Dodatok VI (take a look) before the Convention “Rules for the protection of shipwrecking”. Retrieved from http://docs.cntd.uа/document/499014496. Search in Google Scholar

2. Z. Yang, Q. Tan, and P. Geng, “Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel,” Polish Maritime Research, vol. 1, no. 101, pp. 153–161, 2019. Retrieved from: https://doi.org/10.2478/pomr-2019-0017.10.2478/pomr-2019-0017 Search in Google Scholar

3. O. Cherednichenko and V. Mitienkova, “Analysis of the impact of thermochemical recuperation of waste heat on the energy efficiency of gas carriers,” Journal of Marine Science and Application, 2020. Retrieved from https://doi.org/10.1007/s11804-020-00127-5.10.1007/s11804-020-00127-5 Search in Google Scholar

4. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 26, no. 3, pp. 181–187, 2019. Retrieved from https://doi.org/10.2478/pomr-2019-0059.10.2478/pomr-2019-0059 Search in Google Scholar

5. Y. Kondratenko, V. Korobko, O. Korobko, G. Kondratenko, and O. Kozlov, “Green-IT approach to design and optimization of thermoacoustic waste heat utilization plant based on soft computing,” Studies in Systems, Decision and Control, 287–311, 2017. Retrieved from http://doi.org/doi:10.1007/978-3-319-55595-9_14.10.1007/978-3-319-55595-9_14 Search in Google Scholar

6. Y. Kondratenko, S. Serbin, V. Korobko, and O. Korobko, “Optimisation of bi-directional pulse turbine for waste heat utilization plant based on green IT paradigm” Studies in Systems, Decision and Control, pp. 469–485, 2018. http://doi.org/doi:10.1007/978-3-030-00253-4_20.10.1007/978-3-030-00253-4_20 Search in Google Scholar

7. V. Kornienko, R. Radchenko, A. Stachel, A. Andreev, and M. Pyrysunko, “Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion,” Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 530–539, 2020. Retrieved from http://doi:10.1007/978-3-030-40724-7_54.10.1007/978-3-030-40724-7_54 Search in Google Scholar

8. Product manual scrubber (scrubber) (2013). Wartsila, 98 p. Retrieved from https://cdn.wartsila.com/docs/default-source/local-files/russia/products/project-guides/wärtsiläscrubber-product-guide-rev-c_rus.pdf?sfvrsn=73676f44_2. Search in Google Scholar

9. Unit for reducing NOx emissions by technology SCR by WÄRTSILÄ. Retrieved from https://cdn.wartsila.com/docs/default-source/local-files/russia/products/nox_reducers-rus.pdf?sfvrsn=f1696f44_2. Search in Google Scholar

10. O.V. Serazhutdinov and V.A. Chistyakov, “Technologies for the reduction of nitrogen oxides in the exhaust gases of marine diesel engines” Marine Intelligent Technology, №4-1(30), pp. 23–28, 2015. Search in Google Scholar

11. V.V. Le and T.H. Truong, “A simulation study to assess the economic, energy and emissions characteristics of a marine engine equipped with exhaust gas recirculation,” 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020. Retrieved from http://doi.org/doi:10.1063/5.0000135.10.1063/5.0000135 Search in Google Scholar

12. R. Radchenko, M. Pyrysunko, V. Kornienko, R. Patyk, and O. Moskovko, “Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat,” ICTM 2020, Advances in Intelligent Systems and Computing, Springer, Cham, 10 p., 2020.10.1007/978-3-030-66717-7_45 Search in Google Scholar

13. Y. Zhao, Y. Fan, K. Fagerholt, and J. Zhou, “Reducing sulfur and nitrogen emissions in shipping economically” Transportation Research Part D, Transport and Environment, vol. 90, 2021. Retrieved from https://doi.org/10.1016/j.trd.2020.102641.10.1016/j.trd.2020.102641 Search in Google Scholar

14. New system PureSOx Express. Retrieved from https://www.alfalaval.ua/media/news/2020/new-alfa-laval-puresox-express-offers-easy-access-to-sox-scrubber-advantages/. Search in Google Scholar

15. Y.-S. Choi, and T.-W. Lim, “Numerical simulation and validation in scrubber wash water discharge from ships,” Journal of Marine Science and Engineering, vol. 8, no. 4, p. 272, 2020. Retrieved from http://doi.org/doi:10.3390/jmse8040272.10.3390/jmse8040272 Search in Google Scholar

16. S. Endres et al., “A new perspective at the ship-airsea-interface: The environmental impacts of exhaust gas scrubber discharge,” Frontiers in Marine Science, vol. 5, 2018. Retrieved from http://doi.org/doi:10.3389/fmars.2018.00139.10.3389/fmars.2018.00139 Search in Google Scholar

17. H. Xi, S. Zhou, and Z. Zhang, “A novel method using Na2S2O8 as an oxidant to simultaneously absorb SO2 and NO from marine diesel engine exhaust gases,” Energy & Fuels, 2020. Retrieved from http://doi.org/doi:10.1021/acs.energyfuels.9b03334.10.1021/acs.energyfuels.9b03334 Search in Google Scholar

18. Y.A. Bystrov, S.A. Isayev, N.A. Kudryavtsev, and A. I. Leont’yev, Numerical Simulation of Heat Transfer Vortex Intensification in the Pipe Packs. St. Petersburg: Shipbuilding, 2005. Search in Google Scholar

19. T.B. Gatski, M.Y. Hussaini, and J.L. Lumley, Simulation and Modelling of Turbulent Flows. Oxford, New York: Oxford University Press, 314 p., 1996. Retrieved from https://www.academia.edu/10100418/SIMULATION_AND_MODELLING_OF_TURBULENT_FLOWS (last accessed: 20.01.2021).10.1093/oso/9780195106435.001.0001 Search in Google Scholar

20. S. Sarkar and L. Balakrishnan, Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer, 1990. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a227097.pdf (last accessed: 20.01.2021). Search in Google Scholar

21. Introducing code_Saturne. Retrieved from https://www.code-saturne.org/cms/. Search in Google Scholar

22. Computational Fluid Dynamics: CFD Software. Retrieved from https://www.simscale.com/product/cfd/. Search in Google Scholar

23. B.V. Dymo, A.Y. Voloshyn, A.E. Yepifanov, and V.V. Kuznetsov, “Increase of ship power plants gas-air cooler efficiency,” Problemele Energeticii Regionale, vol. 2, no. 34, pp. 113–124, 2017. Search in Google Scholar

24. B.V. Dymo, A.Y. Voloshyn, and V.I. Kharchenko, “The research of gas-dynamic processes in the gas-air cooler of the ship power plant,” Zbirnyk Naukovykh Prats’ NUK, vol. 6, pp. 81–89, 2010. Search in Google Scholar

25. A.A Khalatov, Heat Transfer and Fluid Mechanics over Surface Indentations (Dimples). Kiev: National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics, 64 p., 2005. Search in Google Scholar

26. V.V. Kuznetsov, “Generalization of the rules in the heat transfer of swirling flows inside the tubular channels of power plants heat transfer devices,” Collection of Scientific Papers of Admiral Makarov National University of Shipbuilding vol. 5, pp. 46–52, 2015. Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais