Accès libre

A Practical Approach to the Assessment of Waterjet Propulsion Performance: The Case of a Waterjet-Propelled Trimaran

À propos de cet article

Citez

1. Van T.T. (1991): The Effect of Waterjet-Hull Interaction on Thrust and Propulsive Efficiency. Proceedings of 1st International Conference on Fast Sea Transportation Conference, Trondheim, Norway, 1991, 1149-1167. Search in Google Scholar

2. Alexander K., Coop H., Van T.T. (1993): Waterjet-Hull Interaction: Recent Experimental Results. SNAME Transactions, Vol. 102, 275-335. Search in Google Scholar

3. ITTC (1996): The Specialist Committee on Waterjets: Final Report and Recommendations to the 21st ITTC. Proceedings of the 21st International Towing Tank Conference, Trondheim. Search in Google Scholar

4. Park W.G., Jin H.J., Chun H.H., Kim M.C. (2005): Numerical Flow and Performance Analysis of Waterjet Propulsion System. Ocean Engineering, Vol. 32(14-15), 1740-1761.10.1016/j.oceaneng.2005.02.004 Search in Google Scholar

5. Park W.G., Yun H.S., Chun H.H., Kim M.C. (2005): Numerical Flow Simulation of Flush Type Intake Duct of Waterjet. Ocean Engineering, Vol. 32(17), 2107-2120.10.1016/j.oceaneng.2005.03.001 Search in Google Scholar

6. Takai T. (2010): Simulation Based Design for High Speed Sea Lift with Waterjets by High Fidelity URANS Approach. Master’s thesis, University of Iowa. Search in Google Scholar

7. Takai T., Kandasamy M., Stern F. (2011): Verification and Validation Study of URANS Simulations for an Axial Waterjet Propelled Large High-Speed Ship. Journal of Marine Science and Technology, Vol. 16(4), 434-447.10.1007/s00773-011-0138-x Search in Google Scholar

8. Altosole M., Benvenuto G., Figari M., Campora U. (2012): Dimensionless Numerical Approaches for the Performance Prediction of Marine Waterjet Propulsion Units. International Journal of Rotating Machinery, Vol. 2012, 1-12.10.1155/2012/321306 Search in Google Scholar

9. Eslamdoost A. (2014): The Hydrodynamics of Waterjet/Hull Interaction. PhD thesis, Chalmers University of Technology. Search in Google Scholar

10. Eslamdoost A., Larsson L., Bensow R. (2014): A Pressure Jump Method for Modeling Waterjet/Hull Interaction. Ocean Engineering, Vol. 88, 120-130.10.1016/j.oceaneng.2014.06.014 Search in Google Scholar

11. Gong J., Guo C.Y., Wang C., Wu T.C., Song K.W. (2019): Analysis of Waterjet-Hull Interaction and its Impact on the Propulsion Performance of a Four-Waterjet-Propelled Ship. Ocean Engineering, Vol. 180, 211-222.10.1016/j.oceaneng.2019.04.002 Search in Google Scholar

12. Zhang L., Zhang J.N., Shang Y.C. (2019): A Potential Flow Theory and Boundary Layer Theory Based Hybrid Method for Waterjet Propulsion. Journal of Marine Science and Engineering, Vol. 7(4), 113.10.3390/jmse8010011 Search in Google Scholar

13. Zhou L.L. (2012): Numerical Study of High Speed Ship Tail Wave. PhD thesis, Wuhan University of Technology. Search in Google Scholar

14. Liu Z.L., Yu R.T., Zhu Q.D. (2012): Study of a Method for Calculation Boundary Layer Influence Coefficients of Ship and Boat Propelled by Water-Jet. Journal of Ship Mechanics, Vol. 16(10), 1115-1121. Search in Google Scholar

15. Gong J., Guo C.Y., Song K.W. (2016): Experimental Study of Boundary Effect Coefficients of Waterjet Propelled Ship Model. 2016 Meeting of the Technical Committee on Ship Mechanics, 313-319. Search in Google Scholar

16. Zhang L., Zhang J.N., Shang Y.C. (2019): Stern Flap-Waterjet-Hull Interactions and Mechanism: a Case of Waterjet-propelled Trimaran with Stern Flap. Journal of Offshore Mechanics and Arctic Engineering, DOI: https://doi.org/10.1115/1.4045498.10.1115/1.4045498 Search in Google Scholar

17. Wang J.H., Wan D.C. (2018): CFD Investigations of Ship Maneuvering in Waves Using naoe-FOAM-SJTU Solver. Journal of Marine Science and Application, Vol. 17(3), 443-458.10.1007/s11804-018-0042-4 Search in Google Scholar

18. Broglia R., Dubbioso G., Durante D., Mascio A.D. (2013): Simulation of Turning Circle by CFD: Analysis of Different Propeller Models and their Effect on Manoeuvring Prediction. Applied Ocean Research, Vol. 39, 1-10.10.1016/j.apor.2012.09.001 Search in Google Scholar

19. Jin Y.T., Duffy J., Chai S.H., Magee A.R. (2019): DTMB 5415M Dynamic Manoeuvres with URANS Computation Using Body-Force and Discretised Propeller Models. Ocean Engineering, Vol. 182, 305-317.10.1016/j.oceaneng.2019.04.036 Search in Google Scholar

20. Baek D.G., Yoon H.S., Jung J.H., Kim K.S., Paik B.G. (2015): Effects of the Advance Ratio on the Evolution of a Propeller Wake. Computers and Fluids, Vol. 118, 32-43.10.1016/j.compfluid.2015.06.010 Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais