Accès libre

Impact of High-pressure Impregnation and Fire Protective Coatings on the Reaction to Fire Performance of Birch Plywood

À propos de cet article

Citez

Ali, S., Hussain, S.A.,Tohir, M.Z.M. (2019). Fire Test and Effects of Fire Retardant on the Natural Ability of Timber: A Review. Pertanika Journal of Science and Technology 27(2), P 867 – 895.Search in Google Scholar

Bekhta, P., Bryn, O., Sedliačik, J., and Novák, I. (2016). Effect of different fire retardants on birch plywood properties, Acta Facultatis Xylologiae Zvolen 58(1), 59-66. DOI: 10.17423/afx.2016.58.1.07.Open DOISearch in Google Scholar

Bryn, O., Bekhta, P., Sedliačik, J., Forosz, V., Galysh, V. (2016) The effect of diffusive impregnation of birch veneers with fire retardant on plywood properties. Bioresources 11(4). DOI: 10.15376/biores.11.4.9112-9125.Open DOISearch in Google Scholar

Bukšāns, E., (2010). Different factor influence on fire safety of wood materials and prediction of the reaction to fire. Phd Theis, Latvia University of Agriculture. 127 pp.Search in Google Scholar

Demir, A., Aydin, I., Salca, E. (2017). Some Technological Properties of Plywood after Fire Retardant Treatment in Different Concentrations. PRO LIGNO Vol.13 N 2 2017. P 40-45.Search in Google Scholar

EC Commission decision 2007/348 of 15 May 2007 amending Decision 2003/43/EC establishing the classes of reaction-to-fire performance for certain construction products as regards wood-based panels, Official Journal of the European Union. Retrieved September 30, 2020, from https://eur-lex.europa.eu/eli/dec/2007/348/oj.Search in Google Scholar

EN 13238:2010, Reaction to fire tests for building products – Conditioning procedures and general rules for selection of substrates. CEN/TC 127 Fire safety in buildings.Search in Google Scholar

EN 13501-1:2018, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests. CEN/TC 127 Fire safety in buildings.Search in Google Scholar

EN 13823:2010, Reaction to fire tests for building products - Building products excluding floorings exposed to the thermal attack by a single burning item, CEN/TC 127 Fire safety in buildings.Search in Google Scholar

EN ISO 11925-2:2020, Reaction to fire tests - Ignitability of products subjected to direct impingement of flame, CEN/TC 127 Fire safety in buildings.Search in Google Scholar

Fanfarová, A., Makovická Osvaldová, L., Gašpercová, S. (2016). Testing of Fire Retardants. Applied Mechanics and Materials Vol. 861, pp 72-79. DOI: 10.4028/www.scientific.net/AMM.861.72.Open DOISearch in Google Scholar

Grexa, O. (2000). Flame retardant treated wood products. In: The proceedings of Wood and Fire safety (part one). Technical university of Zvolen. Zvolen, 2000.Search in Google Scholar

Hu, L., Chen, Z., Fu, F., Fan, M. (2015). Investigation of Factory Fire Retardant Treatment of Eucalyptus Plywood. Forest Products Journal 65(7-8). DOI: 10.13073/FPJ-D-14-00020.Open DOISearch in Google Scholar

Jiang, J., Li, J., Hu, J., Fan, D. (2010). Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction and Building Materials Vol. 24, Issue 12, December 2010, Pages 2633-2637.10.1016/j.conbuildmat.2010.04.064Search in Google Scholar

Kristoffersen, B., Hansen, A. (2004). Using the cone calorimeter for screening and control testing of fire retarded treated wood products. In: Proceedings of 10th international conference Interflam 2004: Vol. 2. Interscience communications Ltd. London. P.1397-1408.Search in Google Scholar

LeVan, S.L. (1984). Chemistry of fire retardancy. In: Rowell, R. M. (ed.). The chemistry of solid wood: Vol. 207. American Chemical Society. Washington, 1984. P.531-574.Search in Google Scholar

LeVan, S.L., Collet, M. (1989). Choosing and applying fire retardant treated plywood and lumber for roof designs: General Technical Report FPL-GTR-62. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, 11 p. DOI: https://doi.org/10.2737/FPL-GTR-62.Open DOISearch in Google Scholar

Liodakis, S., Vorisis, D., Agiovlasitis, I.P. (2006). Testing the retardancy of various inorganic chemicals on smoldering combustion of Pinus halepensis needles. Thermochimica Acta. 444(2), 157-165. DOI: https://doi.org/10.1016/j.tca.2006.03.010.Open DOISearch in Google Scholar

Mariappan, T. (2017). Fire Retardant Coatings In Book: New Technologies in Protective Coatings, edited by Carlos Giudice, Chapter 6, DOI: 10.5772/67675.Open DOISearch in Google Scholar

Miljković, J., Grmuša, I., Điporović, M., KačarevićPopović, Z. (2005). The influence of fire retardants on the properties of beech and poplar veneers and plywood. Glasnik Sumarskog fakulteta 2005(92). DOI: 10.2298/GSF0592111M.Open DOISearch in Google Scholar

Östman, B., Tsantaridis, L., Mikkola, E., Hakkarainen, T., Belloni, K., Brumer, H., & Piispanen, P. (2006). Innovative eco-efficient high fire performance wood products for demanding applications: Final report for Vinnova-Tekes project InnoFireWood. SP Rapport, No. 30. Retrieved September 30, 2020, from http://virtual.vtt.fi/virtual/inno-firewood/finalreport/sp_rapp_2006_30_innofirewood.pdf.Search in Google Scholar

Seo, H. J., Hwang, W., and Lee, M. C. (2017). Fire properties of Pinus densiflora utilizing fire-retardant chemicals based on borated and phosphorus (I) – combustion characteristics, BioRes. 12(3), 5417-5427. DOI: 10.15376/biores.12.3.5417-5427.Open DOISearch in Google Scholar

Zhang, J., Delichatsios, MA, McKee, M., Ukleja, S. (2012). Experimental and numerical study of burning behaviors of flaxboard with intumescent coating and nanoparticles in the cone calorimeter and single burning item tests. Fire and Materials. 2012; 36: P 554-564.Search in Google Scholar

eISSN:
2256-0939
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Plant Science, Ecology