Accès libre

Investigation of the effectiveness of eight different metal artifact reduction algorithms in reducing extracorporeal metal artifacts: a phantom study using the Gumbel method

 et   
07 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Ichikawa K. CT super basic. Tokyo, Japan: Ohmsha; 2015. Search in Google Scholar

Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018;38(2):450-461. https://doi.org/10.1148/rg.2018170102 Search in Google Scholar

Greffier J, Larbi A, Frandon J, Daviau PA, Beregi JP, Pereira F. Influence of iterative reconstruction and dose levels on metallic artifact reduction: a phantom study within four CT systems. Diagn Interv Imaging. 2019;100(5):269-277. https://doi.org/10.1016/j.diii.2018.12.007 Search in Google Scholar

Huang JY, Kerns JR, Nute JL, et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol. 2015;60(3):1047-1067. https://doi.org/10.1088/0031-9155/60/3/1047 Search in Google Scholar

Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol. 2024;170:111276. https://doi.org/10.1016/j.ejrad.2023.111276 Search in Google Scholar

Hauser TK, Oergel A, Hurth H, Ernemann U, Seeger A. Artifact reduction in the diagnosis of vasospasm in computed tomographic perfusion: potential of iterative metal artifact reduction. J Comput Assist Tomogr. 2019;43(4):553-558. https://doi.org/10.1097/rct.0000000000000879 Search in Google Scholar

Aissa J, Boos J, Sawicki LM, et al. Iterative metal artifact reduction (MAR) in postsurgical chest CT: comparison of three iMARalgorithms. Br J Radiol. 2017;90(1079):20160778. https://doi.org/10.1259/bjr.20160778 Search in Google Scholar

Pagniez J, Legrand L, Khung S, et al. Metal artifact reduction on chest computed tomography examinations: comparison of the iterative metallic artifact reduction algorithm and the monoenergetic approach. J Comput Assist Tomogr. 2017;41(3):446-454. https://doi.org/10.1097/rct.0000000000000544 Search in Google Scholar

Boomsma MF, Warringa N, Edens MA, et al. Quantitative analysis of orthopedic metal artifact reduction in 64-slice computed tomography scans in large head metal-on-metal total hip replacement, a phantom study. Springerplus. 2016;5:405. https://doi.org/10.1186/s40064-016-2006-y Search in Google Scholar

Pan YN, Chen G, Li AJ, et al. Reduction of metallic artifacts of the post-treatment intracranial aneurysms: effects of single energy metal artifact reduction algorithm. Clin Neuroradiol. 2019;29(2):277-284. https://doi.org/10.1007/s00062-017-0644-2 Search in Google Scholar

Aissa J, Thomas C, Sawicki LM, et al. Iterative metal artifact reduction in CT: can dedicated algorithms improve image quality after spinal instrumentation? Clin Radiol. 2017;72(5):428.e7-428.e12. https://doi.org/10.1016/j.crad.2016.12.006 Search in Google Scholar

Neroladaki A, Martin SP, Bagetakos I, et al. Metallic artifact reduction by evaluation of the additional value of iterative reconstruction algorithms in hip prosthesis computed tomography imaging. Medicine (Baltimore). 2019;98(6):e14341. https://doi.org/10.1097/md.0000000000014341 Search in Google Scholar

Hoyoshi K, Satou T, Okada A. [Effect of hybrid iterative reconstruction on CT image quality using metal artifact reduction]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(8):797-804. Japanese. https://doi.org/10.6009/jjrt.2018_jsrt_74.8.797 Search in Google Scholar

Takayanagi T, Arai T, Amanuma M, et al. [Pacemaker-induced metallic artifacts in coronary computed tomography angiography: clinical feasibility of single energy metal artifact reduction technique]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73(6):460-466. Japanese. https://doi.org/10.6009/jjrt.2017_jsrt_73.6.460 Search in Google Scholar

Nagayama Y, Tanoue S, Oda S, et al. Metal artifact reduction in head CT performed for patients with deep brain stimulation devices: effectiveness of a single-energy metal artifact reduction algorithm. AJNR Am J Neuroradiol. 2020;41(2):231-237. https://doi.org/10.3174/ajnr.a6375 Search in Google Scholar

Tsuboi K, Fukunaga M, Yamamoto H. [The effect of metal artifact reduction at different calibrated and display field of views in computed tomography]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(12):1237-1244. Japanese. https://doi.org/10.6009/jjrt.2016_jsrt_72.12.1237 Search in Google Scholar

Takada K, Ichikawa K, Banno S, Otobe K. [Suggestion of the relative artifact index for noise-independent evaluation of the streak artifact]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(4):315-325. Japanese. https://doi.org/10.6009/jjrt.2018_jsrt_74.4.315 Search in Google Scholar

Imai K, Ikeda M, Wada S, et al. Analysis of streak artifacts on CT images using statistics of extremes. Br J Radiol. 2007;80(959):911-918. https://doi.org/10.1259/bjr/93741044 Search in Google Scholar

Nakamura S, Kawata H, Kuroki H, Mizoguchi A. [Effect of reconstruction technique for metal artifact reduction in computed tomography by changing display field of view]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71(11):1096-1102. Japanese. https://doi.org/10.6009/jjrt.2015_jsrt_71.11.1096 Search in Google Scholar

Kitaguchi S, Imai K, Ueda S, et al. [Quantitative evaluation of metal artifacts on CT images on the basis of statistics of extremes]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(5):402-409. Japanese. https://doi.org/10.6009/jjrt.2016_jsrt_72.5.402 Search in Google Scholar

Nakane J, Kobayashi Y, Shiozawa T. [Isotropic evaluation of streak artifact using extreme value statistical analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71(12):1165-1173. Japanese. https://doi.org/10.6009/jjrt.2015_jsrt_71.12.1165 Search in Google Scholar

Nomura Y, Watanabe H, Manila NG, Asai S, Kurabayashi T. Evaluation of streak metal artifacts in cone beam computed tomography by using the Gumbel distribution: a phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;131(4):494-502. https://doi.org/10.1016/j.oooo.2020.08.031 Search in Google Scholar

Imai K, Ikeda M, Enchi Y, Niimi T. Quantitative assessment of image noise and streak artifact on CT image: comparison of z-axis automatic tube current modulation technique with fixed tube current technique. Comput Med Imaging Graph. 2009;33(5):353-358. https://doi.org/10.1016/j.compmedimag.2009.02.003 Search in Google Scholar

Imai K, Ikeda M, Enchi Y, Niimi T. Statistical characteristics of streak artifacts on CT images: relationship between streak artifacts and mA s values. Med Phys. 2009;36(2):492-499. https://doi.org/10.1118/1.3056554 Search in Google Scholar

Ishikawa T, Suzuki S, Harashima S, Fukui R, Kaiume M, Katada Y. Metal artifacts reduction in computed tomography: A phantom study to compare the effectiveness of metal artifact reduction algorithm, model-based iterative reconstruction, and virtual monochromatic imaging. Medicine (Baltimore). 2020 11;99(50):e23692. https://doi.org/10.1097/md.0000000000023692 Search in Google Scholar

Wayer DR, Kim NY, Otto BJ, Grayev AM, Kuner AD. Unintended consequences: review of new artifacts introduced by iterative reconstruction CT metal artifact reduction in spine imaging. AJNR Am J Neuroradiol. 2019;40(11):1973-1975. https://doi.org/10.3174/ajnr.a6238 Search in Google Scholar