Investigation of the effectiveness of eight different metal artifact reduction algorithms in reducing extracorporeal metal artifacts: a phantom study using the Gumbel method
Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018;38(2):450-461. https://doi.org/10.1148/rg.2018170102Search in Google Scholar
Greffier J, Larbi A, Frandon J, Daviau PA, Beregi JP, Pereira F. Influence of iterative reconstruction and dose levels on metallic artifact reduction: a phantom study within four CT systems. Diagn Interv Imaging. 2019;100(5):269-277. https://doi.org/10.1016/j.diii.2018.12.007Search in Google Scholar
Huang JY, Kerns JR, Nute JL, et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol. 2015;60(3):1047-1067. https://doi.org/10.1088/0031-9155/60/3/1047Search in Google Scholar
Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol. 2024;170:111276. https://doi.org/10.1016/j.ejrad.2023.111276Search in Google Scholar
Hauser TK, Oergel A, Hurth H, Ernemann U, Seeger A. Artifact reduction in the diagnosis of vasospasm in computed tomographic perfusion: potential of iterative metal artifact reduction. J Comput Assist Tomogr. 2019;43(4):553-558. https://doi.org/10.1097/rct.0000000000000879Search in Google Scholar
Aissa J, Boos J, Sawicki LM, et al. Iterative metal artifact reduction (MAR) in postsurgical chest CT: comparison of three iMARalgorithms. Br J Radiol. 2017;90(1079):20160778. https://doi.org/10.1259/bjr.20160778Search in Google Scholar
Pagniez J, Legrand L, Khung S, et al. Metal artifact reduction on chest computed tomography examinations: comparison of the iterative metallic artifact reduction algorithm and the monoenergetic approach. J Comput Assist Tomogr. 2017;41(3):446-454. https://doi.org/10.1097/rct.0000000000000544Search in Google Scholar
Boomsma MF, Warringa N, Edens MA, et al. Quantitative analysis of orthopedic metal artifact reduction in 64-slice computed tomography scans in large head metal-on-metal total hip replacement, a phantom study. Springerplus. 2016;5:405. https://doi.org/10.1186/s40064-016-2006-ySearch in Google Scholar
Pan YN, Chen G, Li AJ, et al. Reduction of metallic artifacts of the post-treatment intracranial aneurysms: effects of single energy metal artifact reduction algorithm. Clin Neuroradiol. 2019;29(2):277-284. https://doi.org/10.1007/s00062-017-0644-2Search in Google Scholar
Aissa J, Thomas C, Sawicki LM, et al. Iterative metal artifact reduction in CT: can dedicated algorithms improve image quality after spinal instrumentation? Clin Radiol. 2017;72(5):428.e7-428.e12. https://doi.org/10.1016/j.crad.2016.12.006Search in Google Scholar
Neroladaki A, Martin SP, Bagetakos I, et al. Metallic artifact reduction by evaluation of the additional value of iterative reconstruction algorithms in hip prosthesis computed tomography imaging. Medicine (Baltimore). 2019;98(6):e14341. https://doi.org/10.1097/md.0000000000014341Search in Google Scholar
Hoyoshi K, Satou T, Okada A. [Effect of hybrid iterative reconstruction on CT image quality using metal artifact reduction]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(8):797-804. Japanese. https://doi.org/10.6009/jjrt.2018_jsrt_74.8.797Search in Google Scholar
Takayanagi T, Arai T, Amanuma M, et al. [Pacemaker-induced metallic artifacts in coronary computed tomography angiography: clinical feasibility of single energy metal artifact reduction technique]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73(6):460-466. Japanese. https://doi.org/10.6009/jjrt.2017_jsrt_73.6.460Search in Google Scholar
Nagayama Y, Tanoue S, Oda S, et al. Metal artifact reduction in head CT performed for patients with deep brain stimulation devices: effectiveness of a single-energy metal artifact reduction algorithm. AJNR Am J Neuroradiol. 2020;41(2):231-237. https://doi.org/10.3174/ajnr.a6375Search in Google Scholar
Tsuboi K, Fukunaga M, Yamamoto H. [The effect of metal artifact reduction at different calibrated and display field of views in computed tomography]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(12):1237-1244. Japanese. https://doi.org/10.6009/jjrt.2016_jsrt_72.12.1237Search in Google Scholar
Takada K, Ichikawa K, Banno S, Otobe K. [Suggestion of the relative artifact index for noise-independent evaluation of the streak artifact]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(4):315-325. Japanese. https://doi.org/10.6009/jjrt.2018_jsrt_74.4.315Search in Google Scholar
Imai K, Ikeda M, Wada S, et al. Analysis of streak artifacts on CT images using statistics of extremes. Br J Radiol. 2007;80(959):911-918. https://doi.org/10.1259/bjr/93741044Search in Google Scholar
Nakamura S, Kawata H, Kuroki H, Mizoguchi A. [Effect of reconstruction technique for metal artifact reduction in computed tomography by changing display field of view]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71(11):1096-1102. Japanese. https://doi.org/10.6009/jjrt.2015_jsrt_71.11.1096Search in Google Scholar
Kitaguchi S, Imai K, Ueda S, et al. [Quantitative evaluation of metal artifacts on CT images on the basis of statistics of extremes]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(5):402-409. Japanese. https://doi.org/10.6009/jjrt.2016_jsrt_72.5.402Search in Google Scholar
Nakane J, Kobayashi Y, Shiozawa T. [Isotropic evaluation of streak artifact using extreme value statistical analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71(12):1165-1173. Japanese. https://doi.org/10.6009/jjrt.2015_jsrt_71.12.1165Search in Google Scholar
Nomura Y, Watanabe H, Manila NG, Asai S, Kurabayashi T. Evaluation of streak metal artifacts in cone beam computed tomography by using the Gumbel distribution: a phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;131(4):494-502. https://doi.org/10.1016/j.oooo.2020.08.031Search in Google Scholar
Imai K, Ikeda M, Enchi Y, Niimi T. Quantitative assessment of image noise and streak artifact on CT image: comparison of z-axis automatic tube current modulation technique with fixed tube current technique. Comput Med Imaging Graph. 2009;33(5):353-358. https://doi.org/10.1016/j.compmedimag.2009.02.003Search in Google Scholar
Imai K, Ikeda M, Enchi Y, Niimi T. Statistical characteristics of streak artifacts on CT images: relationship between streak artifacts and mA s values. Med Phys. 2009;36(2):492-499. https://doi.org/10.1118/1.3056554Search in Google Scholar
Ishikawa T, Suzuki S, Harashima S, Fukui R, Kaiume M, Katada Y. Metal artifacts reduction in computed tomography: A phantom study to compare the effectiveness of metal artifact reduction algorithm, model-based iterative reconstruction, and virtual monochromatic imaging. Medicine (Baltimore). 2020 11;99(50):e23692. https://doi.org/10.1097/md.0000000000023692Search in Google Scholar
Wayer DR, Kim NY, Otto BJ, Grayev AM, Kuner AD. Unintended consequences: review of new artifacts introduced by iterative reconstruction CT metal artifact reduction in spine imaging. AJNR Am J Neuroradiol. 2019;40(11):1973-1975. https://doi.org/10.3174/ajnr.a6238Search in Google Scholar