Różyło-Kalinowska I. Panoramic radiography in dentistry. Clin Dent Rev. 2021;5(26):1-10. https://doi.org/10.1007/s41894-021-00111-4Search in Google Scholar
Martins LAC, Nascimento EHL, Gaêta-Araujo H, et al. Mapping of a multilayer panoramic radiography device. Dentomaxillofac Radiol. 2022;51(4):20210082. https://doi.org/10.1259/dmfr.20210082Search in Google Scholar
Dhillon M, Raju SM, Verma S, et al. Positioning errors and quality assessment in panoramic radiography. Imaging Sci Dent. 2012;42(4):207-12. https://doi.org/10.5624/isd.2012.42.4.207Search in Google Scholar
Mckee I W, Glover KE, Williamson PC, et al. The effect of vertical and horizontal head positioning in panoramic radiography on mesiodistal tooth. Angle Orthod. 2001;71(6):442-51. https://doi.org/10.1043/0003-3219(2001)071<0442:TEOVAH>2.0.CO;2Search in Google Scholar
Manson EN, Mumuni AN, Shirazu I, et al. Development of a standard phantom for diffusion-weighted magnetic resonance imaging quality control studies: A review. Polish J Med Phys Eng. 2022;28(4):169-179. https://doi.org/10.2478/pjmpe-2022-0020Search in Google Scholar
Bąk B, Skrobała A, Adamska A, et al. Evaluation and risk factors of volume and dose differences of selected structures in patients with head and neck cancer treated on Helical TomoTherapy by using Deformable Image Registration tool. Polish J Med Phys Eng. 2022;28(2):60-68. https://doi.org/10.2478/pjmpe-2022-0007Search in Google Scholar
Ximenes AD, Anam C, Hidayanto E, et al. Automation of slice thickness measurements in computed tomography images of AAPM CT performance phantom using a non-rotational method. Polish J Med Phys Eng. 2022;28(3):133-138. https://doi.org/10.2478/pjmpe-2022-0016Search in Google Scholar
Tanabe Y, Ishida T. Automated Detection of Respiratory Movements for Image Quality Assurance. J Med Imaging Health Inf. 2020;10(7):1473-8. https://doi.org/10.1166/jmihi.2020.3039Search in Google Scholar
Tanabe Y, Ishida T. Development of a novel detection method for changes in lung conditions during radiotherapy using a temporal subtraction technique. Phys Engin Sci Med. 2021;44(2):1341-50. https://doi.org/10.1007/s13246-021-01070-7Search in Google Scholar
Tanabe Y, Ishida T. Quantification of the accuracy limits of image registration using peak signal-to-noise ratio. Radiol Phys Technol. 2017;10(1):91-4. https://doi.org/10.1007/s12194-016-0372-3Search in Google Scholar
Tanabe Y, Kiritani M, Deguchi T, et al. Patient-specific respiratory motion management using lung tumors vs fiducial markers for real-time tumor-tracking stereotactic body radiotherapy. Phys Imaging Radiat Oncol. 2022;25:100405. https://doi.org/10.1016/j.phro.2022.12.002Search in Google Scholar
Agarwal S, Agarwal A, Deshmukh M. Denoising images with varying noises using autoencoders. In: Nain N, Vipparthi S, Raman B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science. 2020;1148:3-14. https://doi.org/10.1007/978-981-15-4018-9_1Search in Google Scholar
Tanabe Y, Ishida T, Eto H, et al. Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum. Med Dosim. 2019;44(4):e39-e43. https://doi.org/10.1016/j.meddos.2018.12.005Search in Google Scholar
Tanabe Y, Tanaka, H. Statistical evaluation of the effectiveness of dual amplitude-gated stereotactic body radiotherapy using fiducial markers and lung volume. Phys Imaging Radiat Oncol. 2022;24:82-87. https://doi.org/10.1016/j.phro.2022.10.001Search in Google Scholar
Oh S, Kim S. Deformable image registration in radiation therapy. Rad Oncol J. 2017;35:101–11. https://doi.org/10.3857/roj.2017.00325Search in Google Scholar
Arganda-Carreras I, Sorzano COS, Kybic J, Ortiz-de-Solorzano C. bUnwarpJ: Consistent and elastic registration in ImageJ. Methods and applications. Second ImageJ User & Developer Conference. 2008Search in Google Scholar
Sorzano CO, Thévenaz P, Unser Ms. Elastic registration of biological images using vector-spline regularization. IEEE Trans Bio Med Eng. 2005;52(4):652-63. https://doi.org/10.1109/TBME.2005.844030Search in Google Scholar
Kattimani S, Kempwade P, Ramesh DNSV, et al. Determination of different positioning errors in digital panoramic radiography: a retrospective study. J Med Radiol Pathol Surg. 2019;6(2):5-8. https://doi.org/10.15713/ins.jmrps.159Search in Google Scholar
Pawar R, Makdissi J. The role of focal block (trough/plane) in panoramic radiography: why do some structures appear blurred out on these images? Radiography. 2014;20(2):167-70. https://doi.org/10.1016/j.radi.2013.11.004Search in Google Scholar
Rondon RHN, Pereira YCL, Nascimento GC. Common positioning errors in panoramic radiography: a review. Imaging Sci Dent. 2014;44(1):1-6. https://doi.org/10.5624/isd.2014.44.1.1Search in Google Scholar
Setiadi DRIM. PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools and Applications. 2021;80(6):8423-44. https://doi.org/10.1007/s11042-020-10035-zSearch in Google Scholar
Grillon M, Yeung AWK. Content Analysis of YouTube Videos That Demonstrate Panoramic Radiography. Healthcare. 2022;10(6):1093. https://doi.org/10.3390/healthcare10061093Search in Google Scholar
Tanabe Y, Ishida T. Development of a quantitative method based on the hill-shading technique for assessing morphological changes in the bone during Image-Guided Radiotherapy for Bone Metastasis. J Med Imaging Health Inf. 2021;11(8):2173-7. https://doi.org/10.1166/jmihi.2021.3818Search in Google Scholar
Hernandez AM, Wu PM, Siewerdsen JH, et al. Location and direction dependence in the 3D MTF for a high-resolution CT system. Med Phys. 2021;48(6):2760-71. https://doi.org/10.1002/mp.14789Search in Google Scholar