Accès libre

Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm

À propos de cet article

Citez

Hurricane, O.A., Patel, P.K., Betti, R., Froula, D.H., Regan, S.P., Slutz, S.A., Gomez, M.R. & Sweeney, M.A. (2023). Physics principles of inertial confinement fusion and US program overview. Rev. Mod. Phys. 95(2), 025005. DOI: 10.1103/RevModPhys.95.025005. Search in Google Scholar

Kraus, M., Diao, Z., Weishaupt, K., Spatz, J.P., Täschner, K., Bartzsch, H., Schmittgens, R. & Brunner, R. (2019). Combined ‘moth-eye’structured and graded index-layer anti-reflecting coating for high index glasses. Opt. Express 27(24), 34655–34664. DOI: 10.1364/OE.27.034655. Search in Google Scholar

Choi, K., Yoon, Y., Jung, J., Ahn, C.W., Lee, G.J., Song, Y.M., Ko, M.J., Lee, H.S., Kim, B. & Kang, I.S. (2017). Super-Antireflective Structure Films with Precisely Controlled Refractive Index Profile. Adv. Opt. Mater. 5(3), 1600616. DOI: 10.1002/adom.201600616. Search in Google Scholar

Rostami, M., Pirvaram, A., Talebzadeh, N. & O’Brien, P.G. (2021). Numerical evaluation of one-dimensional transparent photonic crystal heat mirror coatings for parabolic dish concentrator receivers. Renew. Energ. 171, 1202–1212. DOI: 10.1016/j.renene.2021.03.007. Search in Google Scholar

Shanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P. & Das, N. (2020). Anti-reflective coating materials: A holistic review from PV perspective. Energy 13(10), 2631. DOI: 10.3390/en13102631. Search in Google Scholar

Zhang, X., Lu, Q., Cheng, Y., Liu, L., Shan, Y., Zhang, G. & Li, D. (2019). Moth-eye-like antireflection coatings based on close-packed solid/hollow silica nanospheres. J. Sol-Gel Sci. Technol. 90, 330–338. DOI: 10.1007/s10971-018-04912-1. Search in Google Scholar

Kim, M.S., Yeo, J.E., Choi, H., Chang, S., Kim, D.H. & Song, Y.M. (2023). Evolution of natural eyes and biomimetic imaging devices for effective image acquisition. J. Mater. Chem. C 11(36), 12083–12104. DOI: 10.1039/D3TC01883K. Search in Google Scholar

Stanciu, S.G., König, K., Song, Y.M., Wolf, L., Charitidis, C.A., Bianchini, P. & Goetz, M. (2023). Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. Biophys. Rev. 4(2), 021307. DOI: 10.1063/5.0133027. Search in Google Scholar

Liu, Z., Lian, Z., Ren, W., Xu, J., & Yu, H. (2023). Hierarchically structured stainless-steel surfaces with superior superhydrophobicity and anti-reflection. Materials Letters 350, 134917. DOI: 10.1016/j.matlet.2023.134917. Search in Google Scholar

Wu, P., Xue, Z., Yu, T. & Penkov, O. V. (2023). Transparent Self-cleaning Coatings: A Review. Coatings 13, 1270. DOI: 10.20944/preprints202306.0563.v1 Search in Google Scholar

Jiao, Z., Wang, Z., Wang, Z. & Han, Z. (2023). Multi-functional Biomimetic Composite Coating with Antireflection, Self-Cleaning and Mechanical Stability. Nanomaterials 13(12), 1855. DOI: 10.3390/nano13121855. Search in Google Scholar

Wang, D., Li, Y., Wen, Y., Li, X. & Du, X. (2021). Simple and low cost fabrication of large area nanocoatings with mechanical robustness, enhanced broadband transmittance and antifogging. Colloids Surf. A Physicochem. Eng. Asp. 629, 127522. DOI: 10.1016/j.colsurfa.2021.127522. Search in Google Scholar

Xi, R., Wang, Y., Li, X., Zhang, X. & Du, X. (2020). A facile strategy to form three-dimensional network structure for mechanically robust superhydrophobic nanocoatings with enhanced transmittance. J. Colloid Interf. Sci. 563, 42–53. DOI: 10.1016/j.jcis.2019.12.049. Search in Google Scholar

Dobrowolski, J.A., Poitras, D., Ma, P., Vakil, H. & Acree, M. (2002). Toward perfect antireflection coatings: numerical investigation. Appl. Optics 41(16), 3075–3083. DOI: 10.1364/AO.41.003075. Search in Google Scholar

Tajima, N., Murotani, H. & Matsudaira, T. (2023). Optical multicoating using low-refractive-index SiO2 optical thin films deposited by sputtering and electron beam evaporation. Thin Solid Films 776, 139824. DOI: 10.1016/j.tsf.2023.139824. Search in Google Scholar

Feng, C., Zhang, P., Zhang, W., Sun, J., Wang, J., Zhao, Y. & Shao, J. (2023). “Interface-free” ultrabroadband antireflection film based on nanorod structure with continuous change in refractive index. Opt. Mater. 141, 113965. DOI: 10.1016/j.optmat.2023.113965. Search in Google Scholar

Pfeiffer, K., Ghazaryan, L., Schulz, U. & Szeghalmi, A. (2019). Wide-angle broadband antireflection coatings prepared by atomic layer deposition. ACS Appl. Mater. Interf. 11(24), 21887–21894. DOI: 10.1021/acsami.9b03125. Search in Google Scholar

He, M., Wang, P., Xiao, P., Jia, X., Luo, J. & Jiang, B. (2023). Hollow silica nanospheres synthesized by one-step etching method to construct optical coatings with controllable ultra-low refractive index. Colloid Surf. A 670, 131433. DOI: 10.1016/j.colsurfa.2023.131433. Search in Google Scholar

Wu, H., Liu, C., Zhu, Z., Shao, Y., Lin, J., Wen, J., Wang, H., Zhang, Y., Liang, T., Shao, Y. & Shen, W. (2023). Nanoporous Silicon Dioxide Films for Large Area and Low-Cost Fabrication of Ultra-Low Refractive Index Coatings. ACS Appl. Nano Mater. 6(17), 15437–15444. DOI: 10.1021/acsanm.3c01963. Search in Google Scholar

Ye, L., Zhang, X., Zhang, Y., Li, Y., Zheng, W. & Jiang, B. (2016). Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. J. Sol-Gel Sci. Technol. 80, 1–9. DOI: 10.1007/s10971-016-4051-y. Search in Google Scholar

Ziming, C., Fuqiang, W., Dayang, G., Huaxu, L. & Yong, S. (2020). Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window”. Sol. Energ. Mater. Sol. C. 213, 110563. DOI: 10.1016/j.solmat.2020.110563. Search in Google Scholar

Joshi, D.N., Atchuta, S.R., Reddy, Y.L., Kumar, A.N. & Sakthivel, S. (2019). Super-hydrophilic broadband anti-reflective coating with high weather stability for solar and optical applications. Sol. Energ. Mater. Sol. C. 200, 110023. DOI: 10.1016/j.solmat.2019.110023. Search in Google Scholar

Lu, M., Liu, Q., Wang, Z., Zhang, X., Luo, G., Lu, J., Zeng, D., Zhao, X. & Tian, S. (2023). Facile preparation of porous SiO2 antireflection film with high transmittance and hardness via self-templating method for perovskite solar cells. Mater. Today Chem. 29, 101473. DOI: 10.1016/j.mtchem.2023.101473. Search in Google Scholar

Yoldas, B.E. & Partlow, D.P. (1985). Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129(1-2), 1–14. DOI: 10.1016/0040-6090(85)90089-6. Search in Google Scholar

Ding, R., Cui, X., Zhang, C., Zhang, C. & Xu, Y. (2015). Tri-wavelength broadband antireflective coating built from refractive index controlled MgF2 films. J. Mater. Chem. C 3(13), 3219–3224. DOI: 10.1039/C4TC02542C. Search in Google Scholar

Li, X., Zou, L., Wu, G. & Shen, J. (2014). Laser-induced damage on ordered and amorphous sol-gel silica coatings. Opt. Mater. Express 4(12), 2478–2483. DOI: 10.1364/OME.4.002478. Search in Google Scholar

Lin, P., Mah, M., Randi, J., DeFrances, S., Bernot, D. & Talghader, J.J. (2023). High average power optical properties of silica aerogel thin film. Thin Solid Films, 768, 139722. DOI: 10.1016/j.tsf.2023.139722. Search in Google Scholar

Fan, Q., Liu, H., Jia, X., Yan, L. & Jiang, B. (2022). Study on the Hydrophobic Modification of MTES/NH3 Vapor Surface Treatment for SiO2 Broadband Anti-Reflection Coating. Mater. 15(3), 912. DOI: 10.3390/ma15030912. Search in Google Scholar

Wang, X. & Shen, J. (2012). A review of contamination-resistant antireflective sol–gel coatings. J. Sol-Gel Sci. Technol. 61, 206–212. DOI: 10.1007/s10971-011-2615-4. Search in Google Scholar

Jiang, X., Tang, X., Tang, L., Zhang, B. & Mao, H. (2019). Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate. Ceram. Inter. 45(6), 7673–7680. DOI: 10.1016/j.ceramint.2019.01.067. Search in Google Scholar

Dong, S.Y., Jiao, H.F., Wang, Z.S., Zhang, J.L. & Cheng, X.B. (2022). Interface and defects engineering for multilayer laser coatings. Prog. Surf. Sci. 97(3), 100663. DOI: 10.1016/j.progsurf.2022.100663. Search in Google Scholar

Rao, A.V., Latthe, S.S., Nadargi, D.Y., Hirashima, H. & Ganesan, V. (2009). Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method. J. Colloid Interf. Sci. 332(2), 484–490. DOI: 10.1016/j.jcis.2009.01.012. Search in Google Scholar

Thomas, I.M. (1992). Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Optics 31(28), 6145–6149. DOI: 10.1364/AO.31.006145. Search in Google Scholar

Wang, J., Wang, T., Wang, X., Yang, W., Wang, Z., Li, M. & Shi, L. (2023). Effect of applied voltage on localized deposition of silicon dioxide-like films on stainless steel using atmospheric pressure microplasma jet. Plasma Chem. Plasma P. 43(4), 879–899. DOI: 10.1007/s11090-023-10332-z. Search in Google Scholar

Zhang, J., Yuan, J., Tian, P., Mao, J. & Zhang, Q. (2023). Preparation of gradient refractive index films on glass surface and its anti-reflection properties. J. Alloy. Compd. 972, 172831. DOI: 10.1016/j.jallcom.2023.172831. Search in Google Scholar

Zhao, Y., Gao, W., Shao, J. & Fan, Z. (2004). Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation. Appl. Surf. Sci. 227(1–4), 275–281. DOI: 10.1016/j.apsusc.2003.12.006. Search in Google Scholar

Song, Z., Cheng, X., Ma, H., Zhang, J., Ma, B., Jiao, H. & Wang, Z. (2017). Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064 nm nanosecond laser pulses. Appl. Optics 56(4), C188-C192. DOI: 10.1364/AO.56.00C188. Search in Google Scholar

Chen, X.Q., Zu, X.T., Zheng, W.G., Jiang, X.D., Lü, H.B., Ren, H., Zhang, Y.Z. & Liu, C.M. (2006). Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and IBSD SiO2 thin films. Acta Phys. Sin-Chin. Ed. 55(3), 1201–1206. DOI: http://wulixb.iphy.ac.cn/CN/Y2006/V55/I3/1201. Search in Google Scholar

Zhang, L., Xu, Y., Huang, Z.X., Yang, D.J., Jiang, X.D., Wu, D., Sun, Y. H. &Wei, X.F. (2005). Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating. High Power Laser Part. Beams 17(05), 669–672. DOI: CNKI:SUN:QJGY.0.2005-05-008. Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering