Accès libre

Enhancement of Thermal Stability, Conductivity and Smoke Suppression of Polyethylene Composites with Exfoliated MoS2 Functionalized with Magnetite

À propos de cet article

Citez

1. Liu, SP. (2014). Flame retardant and mechanical properties of polyethylene/magnesium hydroxide/montmorillonite nanocomposites. J. Ind. Eng. Chem., 20, 2401–2408. DOI: 10.1016/j.jiec.2013.10.020. Open DOISearch in Google Scholar

2. Ronca, S. (2017). Polyethylene. In: M. Gilbert (Ed.). Brydson’s Plastics Materials (Eighth Edition), Elsevier, pp 247–278. ISBN: 9780323358248.10.1016/B978-0-323-35824-8.00010-4 Search in Google Scholar

3. Xie, F., Wang, YZ., Yang, B. & Liu, Y.A (2006). Novel Intumescent Flame-Retardant Polyethylene System. Macromol. Mater. Eng., 291, 247–253. DOI: 10.1002/mame.200500356. Open DOISearch in Google Scholar

4. Patel, R.J. & Wang, Q. (2016). Prediction of properties and modeling fire behavior of polyethylene using cone calorimeter. J. Loss. Prev. Process. 41, 411–18. DOI: 10.1016/j. jlp.2015.11.009. Open DOISearch in Google Scholar

5. Shaw, S., Blum, A., Weber, R., Kannan, K., Rich, D., Lucas, D., Koshland, C.P., Dobraca, D., Hanson, S., Birnbaum, L.S. & Birnbaum, L. (2010). Halogenated flame retardants: do the fire safety benefits justify the risks? Rev. Environ. Health. 25, 261–305. DOI: 10.1515/reveh.2010.25.4.261.21268442 Open DOISearch in Google Scholar

6. Shaw, S.D. & Kannan, K. (2009). Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge. Rev. Environ. Health. 24, 157–229. DOI: 10.1515/reveh.2009.24.3.157.19891120 Open DOISearch in Google Scholar

7. Costa, L.G. & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28, 1047–1067. DOI: 10.1016/j. neuro.2007.08.007. Open DOISearch in Google Scholar

8. Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D. & Lee, Y.H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 20, 116–130. DOI: 10.1016/j.mattod.2016.10.002. Open DOISearch in Google Scholar

9. Zhang, X.F., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S. & Talapatra, S. (2009). Carbon Nanotube−MoS2 Composites as Solid Lubricants. ACS Appl. Mater. Interfaces. 1, 735–739. DOI: 10.1021/am800240e.20355996 Open DOISearch in Google Scholar

10. Yang, L., Wang, S., Mao, J., Deng, J., Gao, Q., Tang, Y. & Schmidt, O.G. (2013). Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater., 25, 1180–1184. DOI: 10.1002/adma.201203999.23233278 Open DOISearch in Google Scholar

11. Deng, Z.N., Jiang, H., Hu, Y.J., Liu, Y., Zhang, L., Liu, H.L. & Li, C.Z. (2013). 3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries. Adv. Mater. 29, 1603020–1603027. DOI: 10.1002/adma.201603020.28067960 Open DOISearch in Google Scholar

12. Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J. & Zhang, H. (2013). Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small, 9, 140–147. DOI: 10.1002/smll.201201161.23034984 Open DOISearch in Google Scholar

13. Wang, D., Zhou, K.Q., Yang, W., Xing, W.Y., Hu, Y. & Gong, X.L. (2013). Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res., 52, 17882–17890, DOI: 10.1021/ie402441g. Open DOISearch in Google Scholar

14. Bourbigot, S., Le Bras, M., Duquesne, S. & Rochery, M. (2014). Recent advances for intumescent polymers. Macromol. Mater. Eng., 289, 499–511. DOI: 10.1002/mame.200400007. Open DOISearch in Google Scholar

15. Wang, D., Song, L., Zhou, K., Yu, X., Hu, Y. & Wang, J. (2015). Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A. 3, 14307–14317. DOI: 10.1039/C5TA01720C. Open DOISearch in Google Scholar

16. Zhou, K.Q., Jiang, S.H., Bao, C.L., Song, L., Wang, B.B., Tang, G., Hu, Y. & Gui, Z. (2012). Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv., 2, 11695–11703. DOI: 10.1039/C2RA21719H. Open DOISearch in Google Scholar

17. Zhou, K., Yang, W., Tang, G., Wang, B., Jiang, S., Hu, Y. & Gui, Z. (2013). Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene. RSC Adv., 3, 25030–25040. DOI: 10.1039/C3RA43297A. Open DOISearch in Google Scholar

18. Cai, W., Zhan, J., Feng, X., Yuan, B., Liu, J., Hu, W. & Hu, Y., (2017). Facile Construction of Flame Retardant-Wrapped Molybdenum Disulfide Nanosheets for Properties Enhancement of Thermoplastic Polyurethane. Ind. Eng. Chem. Res., 56, 7229−7238. DOI: 10.1021/acs.iecr.7b01202. Open DOISearch in Google Scholar

19. Zhou, K., Liu, J., Wen, P., Hu, J. & Gui, Z. (2014). A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Appl. Surf. Sci., 316, 237–244. DOI: 10.1016/j.apsusc.2014.07.136. Open DOISearch in Google Scholar

20. Jeffery, A.A., Nethravathi, C. & Rajamathi, M. (2015). Scalable large nanosheets of transition metal disulphides through exfoliation of amine intercalated MS2 [M ¼ Mo, W] in organic solvents. RSC Adv., 5, 51176–51182. DOI: 10.1039/C5RA08402D. Open DOISearch in Google Scholar

21. Zhang, H., Moon, Y.K.; Zhang, X.Q., Zhang, H.X. & Yoon, K.B. (2016). In situ polymerization approach to functionalized MoS2/polyethylene nanocomposites with enhanced thermal stability and mechanical properties. RSC Adv., 6, 112429–112434. DOI: 10.1039/C6RA23723A. Open DOISearch in Google Scholar

22. Zhou, K., Gao, R. & Qian, X. (2017). Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy. J. Hazard. Mater., 338, 343–355. DOI: 10.1016/j.jhazmat.2017.05.046.28595156 Open DOISearch in Google Scholar

23. Ghanbari, D., Salavati-Niasari, M. & Ghasemi-Kooch, M. (2014). A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nano-composite. J. Ind. Eng. Chem., 20, 3970–3974. DOI: 10.1016/j. jiec.2013.12.098. Open DOISearch in Google Scholar

24. Ghanbari, D. & Salavati-Niasari, M. (2015) Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem., 24, 284–292. DOI: 10.1016/j.jiec.2014.09.043. Open DOISearch in Google Scholar

25. Liu, Y., Kong, Q.H., Zhao, X.B.; Zhu, P., Zhao, J., Cubillo, A.E., Santarén, J. & Wang, D.Y. (2017). Effect of Fe3O4-doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polym. Adv. Technol., 28, 971–978. DOI: 10.1002/pat.3715. Open DOISearch in Google Scholar

26. Chang, K. & Chen, W. (2011) l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano, 5, 4720–4728. DOI: 10.1021/nn200659w.21574610 Open DOISearch in Google Scholar

27. Matusinovic, Z., Shukla, R., Manias, E., Hogshead, C.G. &Wilkie, C.A. (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocompo-sites with enhanced thermal stability. Polym. Degrad. Stabil., 97, 2481–2486. DOI: 10.1016/j.polymdegradstab.2012.07.004. Open DOISearch in Google Scholar

28. Zhou, K., Zhang, Q., Liu, J., Wang, B., Jiang, S., Shi, Y., Hu, Y. & Gui, Z. (2014). Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv., 4, 13205–13214. DOI: 10.1039/C3RA46334F. Open DOISearch in Google Scholar

29. Zhou, K., Jiang, S., Shi, Y., Liu, J., Wang, B., Hu, Y. & Gui, Z. (2014) Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv., 4, 40170–40180. DOI: 10.1039/C4RA02347A. Open DOISearch in Google Scholar

30. Yao, K., Gong, J., Tian, N., Lin, Y., Wen, X., Jiang, Z., Na, H. & Tang, T. (2015). Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles. RSC Adv., 5, 31910–31919. DOI: 10.1039/C5RA01046B. Open DOISearch in Google Scholar

31. Beltrán-Ramírez, F.I., Ramos-deValle, L.F., Ramírez-Vargas, E., Sánchez-Valdes, S., Espinoza-Martínez, A.B., Martínez-Colunga, J.G., Rodríguez-Fernandez, O.S., Cabrera-Alvarez, E.N. & López-Quintanilla, M.L. (2014). Effect of Nanometric Metallic Hydroxides on the Flame Retardant Properties of HDPE Composites. J. Nanomater., 969184. DOI: 10.1155/2014/969184. Open DOISearch in Google Scholar

32. Manzi-Nshuti, C., Chen, D., Su, S.P. & Wilkie, C.A. (2009). Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum. Polym. Degrad. Stabil., 94, 1290–1297. DOI: 10.1016/j.polymdegradstab.2009.03.021. Open DOISearch in Google Scholar

33. Wang, J.Q. & Han, D. (2006). The combustion behavior of polyacrylate ester/graphite oxide composite. Polym. Adv. Technol., 17, 335–340. DOI: 10.1002/pat.698. Open DOISearch in Google Scholar

34. Zhang, Q., Tian, M., Wu, Y., Lin, G. & Zhang, L. (2014.) Effect of particle size on the properties of Mg(OH)2- filled rubber composites. J. Appl. Polym. Sci., 94, 2341–2346. DOI: 10.1002/app.21037. Open DOISearch in Google Scholar

35. Laachachi, A., Leroy, E., Cochez, M., Ferriol, M. & Cuesta, J.M.L. (2005) Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym. Degrad. Stabil., 89, 344–352. DOI: 10.1016/j.polymdegradstab.2005.01.019. Open DOISearch in Google Scholar

36. Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F. & Gu, H. (2009). A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites: Part A, 40, 830–836, DOI: 10.1016/j.compositesa.2009.04.005. Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering