Uneingeschränkter Zugang

Enhancement of Thermal Stability, Conductivity and Smoke Suppression of Polyethylene Composites with Exfoliated MoS2 Functionalized with Magnetite


Zitieren

1. Liu, SP. (2014). Flame retardant and mechanical properties of polyethylene/magnesium hydroxide/montmorillonite nanocomposites. J. Ind. Eng. Chem., 20, 2401–2408. DOI: 10.1016/j.jiec.2013.10.020. Open DOISearch in Google Scholar

2. Ronca, S. (2017). Polyethylene. In: M. Gilbert (Ed.). Brydson’s Plastics Materials (Eighth Edition), Elsevier, pp 247–278. ISBN: 9780323358248.10.1016/B978-0-323-35824-8.00010-4 Search in Google Scholar

3. Xie, F., Wang, YZ., Yang, B. & Liu, Y.A (2006). Novel Intumescent Flame-Retardant Polyethylene System. Macromol. Mater. Eng., 291, 247–253. DOI: 10.1002/mame.200500356. Open DOISearch in Google Scholar

4. Patel, R.J. & Wang, Q. (2016). Prediction of properties and modeling fire behavior of polyethylene using cone calorimeter. J. Loss. Prev. Process. 41, 411–18. DOI: 10.1016/j. jlp.2015.11.009. Open DOISearch in Google Scholar

5. Shaw, S., Blum, A., Weber, R., Kannan, K., Rich, D., Lucas, D., Koshland, C.P., Dobraca, D., Hanson, S., Birnbaum, L.S. & Birnbaum, L. (2010). Halogenated flame retardants: do the fire safety benefits justify the risks? Rev. Environ. Health. 25, 261–305. DOI: 10.1515/reveh.2010.25.4.261.21268442 Open DOISearch in Google Scholar

6. Shaw, S.D. & Kannan, K. (2009). Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge. Rev. Environ. Health. 24, 157–229. DOI: 10.1515/reveh.2009.24.3.157.19891120 Open DOISearch in Google Scholar

7. Costa, L.G. & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28, 1047–1067. DOI: 10.1016/j. neuro.2007.08.007. Open DOISearch in Google Scholar

8. Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D. & Lee, Y.H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 20, 116–130. DOI: 10.1016/j.mattod.2016.10.002. Open DOISearch in Google Scholar

9. Zhang, X.F., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S. & Talapatra, S. (2009). Carbon Nanotube−MoS2 Composites as Solid Lubricants. ACS Appl. Mater. Interfaces. 1, 735–739. DOI: 10.1021/am800240e.20355996 Open DOISearch in Google Scholar

10. Yang, L., Wang, S., Mao, J., Deng, J., Gao, Q., Tang, Y. & Schmidt, O.G. (2013). Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater., 25, 1180–1184. DOI: 10.1002/adma.201203999.23233278 Open DOISearch in Google Scholar

11. Deng, Z.N., Jiang, H., Hu, Y.J., Liu, Y., Zhang, L., Liu, H.L. & Li, C.Z. (2013). 3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries. Adv. Mater. 29, 1603020–1603027. DOI: 10.1002/adma.201603020.28067960 Open DOISearch in Google Scholar

12. Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J. & Zhang, H. (2013). Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small, 9, 140–147. DOI: 10.1002/smll.201201161.23034984 Open DOISearch in Google Scholar

13. Wang, D., Zhou, K.Q., Yang, W., Xing, W.Y., Hu, Y. & Gong, X.L. (2013). Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res., 52, 17882–17890, DOI: 10.1021/ie402441g. Open DOISearch in Google Scholar

14. Bourbigot, S., Le Bras, M., Duquesne, S. & Rochery, M. (2014). Recent advances for intumescent polymers. Macromol. Mater. Eng., 289, 499–511. DOI: 10.1002/mame.200400007. Open DOISearch in Google Scholar

15. Wang, D., Song, L., Zhou, K., Yu, X., Hu, Y. & Wang, J. (2015). Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A. 3, 14307–14317. DOI: 10.1039/C5TA01720C. Open DOISearch in Google Scholar

16. Zhou, K.Q., Jiang, S.H., Bao, C.L., Song, L., Wang, B.B., Tang, G., Hu, Y. & Gui, Z. (2012). Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv., 2, 11695–11703. DOI: 10.1039/C2RA21719H. Open DOISearch in Google Scholar

17. Zhou, K., Yang, W., Tang, G., Wang, B., Jiang, S., Hu, Y. & Gui, Z. (2013). Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene. RSC Adv., 3, 25030–25040. DOI: 10.1039/C3RA43297A. Open DOISearch in Google Scholar

18. Cai, W., Zhan, J., Feng, X., Yuan, B., Liu, J., Hu, W. & Hu, Y., (2017). Facile Construction of Flame Retardant-Wrapped Molybdenum Disulfide Nanosheets for Properties Enhancement of Thermoplastic Polyurethane. Ind. Eng. Chem. Res., 56, 7229−7238. DOI: 10.1021/acs.iecr.7b01202. Open DOISearch in Google Scholar

19. Zhou, K., Liu, J., Wen, P., Hu, J. & Gui, Z. (2014). A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Appl. Surf. Sci., 316, 237–244. DOI: 10.1016/j.apsusc.2014.07.136. Open DOISearch in Google Scholar

20. Jeffery, A.A., Nethravathi, C. & Rajamathi, M. (2015). Scalable large nanosheets of transition metal disulphides through exfoliation of amine intercalated MS2 [M ¼ Mo, W] in organic solvents. RSC Adv., 5, 51176–51182. DOI: 10.1039/C5RA08402D. Open DOISearch in Google Scholar

21. Zhang, H., Moon, Y.K.; Zhang, X.Q., Zhang, H.X. & Yoon, K.B. (2016). In situ polymerization approach to functionalized MoS2/polyethylene nanocomposites with enhanced thermal stability and mechanical properties. RSC Adv., 6, 112429–112434. DOI: 10.1039/C6RA23723A. Open DOISearch in Google Scholar

22. Zhou, K., Gao, R. & Qian, X. (2017). Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy. J. Hazard. Mater., 338, 343–355. DOI: 10.1016/j.jhazmat.2017.05.046.28595156 Open DOISearch in Google Scholar

23. Ghanbari, D., Salavati-Niasari, M. & Ghasemi-Kooch, M. (2014). A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nano-composite. J. Ind. Eng. Chem., 20, 3970–3974. DOI: 10.1016/j. jiec.2013.12.098. Open DOISearch in Google Scholar

24. Ghanbari, D. & Salavati-Niasari, M. (2015) Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem., 24, 284–292. DOI: 10.1016/j.jiec.2014.09.043. Open DOISearch in Google Scholar

25. Liu, Y., Kong, Q.H., Zhao, X.B.; Zhu, P., Zhao, J., Cubillo, A.E., Santarén, J. & Wang, D.Y. (2017). Effect of Fe3O4-doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polym. Adv. Technol., 28, 971–978. DOI: 10.1002/pat.3715. Open DOISearch in Google Scholar

26. Chang, K. & Chen, W. (2011) l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano, 5, 4720–4728. DOI: 10.1021/nn200659w.21574610 Open DOISearch in Google Scholar

27. Matusinovic, Z., Shukla, R., Manias, E., Hogshead, C.G. &Wilkie, C.A. (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocompo-sites with enhanced thermal stability. Polym. Degrad. Stabil., 97, 2481–2486. DOI: 10.1016/j.polymdegradstab.2012.07.004. Open DOISearch in Google Scholar

28. Zhou, K., Zhang, Q., Liu, J., Wang, B., Jiang, S., Shi, Y., Hu, Y. & Gui, Z. (2014). Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv., 4, 13205–13214. DOI: 10.1039/C3RA46334F. Open DOISearch in Google Scholar

29. Zhou, K., Jiang, S., Shi, Y., Liu, J., Wang, B., Hu, Y. & Gui, Z. (2014) Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv., 4, 40170–40180. DOI: 10.1039/C4RA02347A. Open DOISearch in Google Scholar

30. Yao, K., Gong, J., Tian, N., Lin, Y., Wen, X., Jiang, Z., Na, H. & Tang, T. (2015). Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles. RSC Adv., 5, 31910–31919. DOI: 10.1039/C5RA01046B. Open DOISearch in Google Scholar

31. Beltrán-Ramírez, F.I., Ramos-deValle, L.F., Ramírez-Vargas, E., Sánchez-Valdes, S., Espinoza-Martínez, A.B., Martínez-Colunga, J.G., Rodríguez-Fernandez, O.S., Cabrera-Alvarez, E.N. & López-Quintanilla, M.L. (2014). Effect of Nanometric Metallic Hydroxides on the Flame Retardant Properties of HDPE Composites. J. Nanomater., 969184. DOI: 10.1155/2014/969184. Open DOISearch in Google Scholar

32. Manzi-Nshuti, C., Chen, D., Su, S.P. & Wilkie, C.A. (2009). Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum. Polym. Degrad. Stabil., 94, 1290–1297. DOI: 10.1016/j.polymdegradstab.2009.03.021. Open DOISearch in Google Scholar

33. Wang, J.Q. & Han, D. (2006). The combustion behavior of polyacrylate ester/graphite oxide composite. Polym. Adv. Technol., 17, 335–340. DOI: 10.1002/pat.698. Open DOISearch in Google Scholar

34. Zhang, Q., Tian, M., Wu, Y., Lin, G. & Zhang, L. (2014.) Effect of particle size on the properties of Mg(OH)2- filled rubber composites. J. Appl. Polym. Sci., 94, 2341–2346. DOI: 10.1002/app.21037. Open DOISearch in Google Scholar

35. Laachachi, A., Leroy, E., Cochez, M., Ferriol, M. & Cuesta, J.M.L. (2005) Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym. Degrad. Stabil., 89, 344–352. DOI: 10.1016/j.polymdegradstab.2005.01.019. Open DOISearch in Google Scholar

36. Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F. & Gu, H. (2009). A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites: Part A, 40, 830–836, DOI: 10.1016/j.compositesa.2009.04.005. Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik