Accès libre

Recent upgrading of the nanosecond pulse radiolysis setup and construction of laser flash photolysis setup at the Institute of Nuclear Chemistry and Technology in Warsaw, Poland

   | 08 oct. 2022
À propos de cet article

Citez

Norrish, R. G. W., & Porter, G. (1949). Chemical reactions produced by very high light intensities. Nature, 164(4172), 658–658. DOI: 10.1038/164658a0. NorrishR. G. W. PorterG. 1949 Chemical reactions produced by very high light intensities Nature 164 4172 658 658 10.1038/164658a0 Open DOISearch in Google Scholar

Porter, G. (1950). Flash photolysis and spectroscopy a new method for the study of free radical reactions. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 200(1061), 284–300. DOI: 10.1098/rspa.1950.0018. PorterG. 1950 Flash photolysis and spectroscopy a new method for the study of free radical reactions Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 200 1061 284 300 10.1098/rspa.1950.0018 Open DOISearch in Google Scholar

Hague, D. N. (1969). Experimental methods for the study of fast reactions. In C. H. Bamford & C. F. H. Tipper (Eds.), Comprehensie chemical kinetics (Vol. 1, pp. 112–179). Elsevier. HagueD. N. 1969 Experimental methods for the study of fast reactions In BamfordC. H. TipperC. F. H. (Eds.), Comprehensive chemical kinetics 1 112 179 Elsevier Search in Google Scholar

Hart, E. J., & Boag, J. W. (1962). Absorption spectrum of hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc., 84(21), 4090–4095. DOI: 10.1021/Ja00880a025. HartE. J. BoagJ. W. 1962 Absorption spectrum of hydrated electron in water and in aqueous solutions J. Am. Chem. Soc. 84 21 4090 4095 10.1021/Ja00880a025 Open DOISearch in Google Scholar

Boag, J. W., & Hart, E. J. (1963). Absorption spectra in irradiated water and some solutions – absorption spectra of hydrated electron. Nature, 197(486), 45–47. DOI: 10.1038/197045a0. BoagJ. W. HartE. J. 1963 Absorption spectra in irradiated water and some solutions – absorption spectra of hydrated electron Nature 197 486 45 47 10.1038/197045a0 Open DOISearch in Google Scholar

Matheson, M. S., & Dorfman, L. M. (1960). Detection of short-lived transients in radiation chemistry. J. Chem. Phys., 32(6), 1870–1871. DOI: 10.1063/1.1731035. MathesonM. S. DorfmanL. M. 1960 Detection of short-lived transients in radiation chemistry J. Chem. Phys. 32 6 1870 1871 10.1063/1.1731035 Open DOISearch in Google Scholar

Keene, J. P. (1960). Kinetics of radiation-induced chemical reactions. Nature, 188(4753), 843–844. DOI: 10.1038/188843b0. KeeneJ. P. 1960 Kinetics of radiation-induced chemical reactions Nature 188 4753 843 844 10.1038/188843b0 Open DOISearch in Google Scholar

Mccarthy, R. L., & Maclachlan, A. (1960). Transient benzyl radical reactions produced by high-energy radiation. Trans. Faraday Soc., 56(8), 1187–1200. DOI: 10.1039/Tf9605601187. MccarthyR. L. MaclachlanA. 1960 Transient benzyl radical reactions produced by high-energy radiation Trans. Faraday Soc. 56 8 1187 1200 10.1039/Tf9605601187 Open DOISearch in Google Scholar

Novak, J. R., & Windsor, M. W. (1968). Laser photolysis and spectroscopy – a new technique for study of rapid reactions in nanosecond time range. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 308(1492), 95–110. DOI: 10.1098/rspa.1968.0210. NovakJ. R. WindsorM. W. 1968 Laser photolysis and spectroscopy – a new technique for study of rapid reactions in nanosecond time range Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 308 1492 95 110 10.1098/rspa.1968.0210 Open DOISearch in Google Scholar

Scaiano, J. C. (1983). Early history of laser flashphotolysis. Accounts Chem. Res., 16(7), 234. DOI: 10.1021/Ar00091a601. ScaianoJ. C. 1983 Early history of laser flashphotolysis Accounts Chem. Res. 16 7 234 10.1021/Ar00091a601 Open DOISearch in Google Scholar

Hentschel, M., Kienberger, R., Spielmann, C., Reider, G. A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M., & Krausz, F. (2001). Attosecond metrology. Nature, 414(6863), 509–513. DOI: 10.1038/35107000. HentschelM. KienbergerR. SpielmannC. ReiderG. A. MilosevicN. BrabecT. CorkumP. HeinzmannU. DrescherM. KrauszF. 2001 Attosecond metrology Nature 414 6863 509 513 10.1038/35107000 11734845 Open DOISearch in Google Scholar

Wishart, J. F., & Nocera, D. G. (1998). Photochemistry and radiation chemistry, complementary methods for the study of electron transfer. Washington, DC: American Chemical Society. WishartJ. F. NoceraD. G. 1998 Photochemistry and radiation chemistry, complementary methods for the study of electron transfer Washington, DC American Chemical Society 10.1021/ba-1998-0254 Search in Google Scholar

Bobrowski, K. (2005). Free radicals in chemistry, biology and medicine: contribution of radiation chemistry. Nukleonika, 50(Suppl. 3), S67–S76. BobrowskiK. 2005 Free radicals in chemistry, biology and medicine: contribution of radiation chemistry Nukleonika 50 Suppl. 3 S67 S76 Search in Google Scholar

Karolczak, S. (1999). Pulse radiolysis – experimental features. In J. Mayer (Ed.), Properties and reactions of radiation induced transients (pp. 11–37). Warszawa: Polish Scientific Publishers PWN. KarolczakS. 1999 Pulse radiolysis – experimental features In MayerJ. (Ed.), Properties and reactions of radiation induced transients 11 37 Warszawa Polish Scientific Publishers PWN Search in Google Scholar

Belloni, J., Crowell, R. A., Katsumura, Y., Lin, M., Marignier, J. -L., Mostafavi, M., Muroya, Y., Saeki, A., Tagawa, S., Yoshida, Y., De Waele, V., & Wishart, J. F. (2010). Ultrafast pulse radiolysis methods. In J. F. Wishart & B. S. M. Rao (Eds.), Recent trends in radiation chemistry (pp. 121–160). World Scientific. BelloniJ. CrowellR. A. KatsumuraY. LinM. MarignierJ. -L. MostafaviM. MuroyaY. SaekiA. TagawaS. YoshidaY. De WaeleV. WishartJ. F. 2010 Ultrafast pulse radiolysis methods In WishartJ. F. RaoB. S. M. (Eds.), Recent trends in radiation chemistry 121 160 World Scientific 10.1142/9789814282093_0005 Search in Google Scholar

Baxendale, J. H., & Busi, F. (1982). The study of fast processes and transient species by electron pulse radiolysis. (Nato Science Series C: Mathematical and Physical Sciences, Vol. 86). Dordrecht: Springer. BaxendaleJ. H. BusiF. 1982 The study of fast processes and transient species by electron pulse radiolysis (Nato Science Series C: Mathematical and Physical Sciences, Vol. 86). Dordrecht Springer 10.1007/978-94-009-7852-2 Search in Google Scholar

Kadlubowski, S., Sawicki, P., Sowinski, S., Rokita, B., Bures, K. D., Rosiak, J. M., & Ulanski, P. (2018). Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) – concept, construction and first tests. Radiat. Phys. Chem., 142, 9–13. https://doi.org/10.1016/j.radphyschem.2017.04.010. KadlubowskiS. SawickiP. SowinskiS. RokitaB. BuresK. D. RosiakJ. M. UlanskiP. 2018 Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) – concept, construction and first tests Radiat. Phys. Chem. 142 9 13 https://doi.org/10.1016/j.radphyschem.2017.04.010. 10.1016/j.radphyschem.2017.04.010 Search in Google Scholar

Zimek, Z. (1990). A new electron linac for puls radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland. Radiat. Phys. Chem., 36(2), 81–83. ZimekZ. 1990 A new electron linac for puls radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland Radiat. Phys. Chem. 36 2 81 83 Search in Google Scholar

Mirkowski, J., Wiśniowski, P., & Bobrowski, K. (2001). A nanosecond pulse radiolysis system dedicated to the new LAE 10 accelerator in the INCT. In Annual Report 2000 (pp. 31–33). Warsaw: Institute of Nuclear Chemistry and Technology. MirkowskiJ. WiśniowskiP. BobrowskiK. 2001 A nanosecond pulse radiolysis system dedicated to the new LAE 10 accelerator in the INCT In Annual Report 2000 31 33 Warsaw Institute of Nuclear Chemistry and Technology Search in Google Scholar

Szreder, T., Schmidt, H., & Modolo, G. (2019). Fast radiation-induced reactions in organic phase of SANEX system containing CyMe4-BTPhen extracting agent. Radiat. Phys. Chem., 164, 108356. DOI: 10.1016/j.radphyschem.2019.108356. SzrederT. SchmidtH. ModoloG. 2019 Fast radiation-induced reactions in organic phase of SANEX system containing CyMe4-BTPhen extracting agent Radiat. Phys. Chem. 164 108356 10.1016/j.radphyschem.2019.108356 Open DOISearch in Google Scholar

Marchini, M., Baroncini, M., Bergamini, G., Ceroni, P., D'Angelantonio, M., Franchi, P., Lucarini, M., Negri, F., Szreder, T., & Venturi, M. (2017). Hierarchical growth of supramolecular structures driven by pimerization of tetrahedrally arranged bipyridinium units. Chem.-Eur. J., 23(26), 6380–6390. DOI: 10.1002/chem.201700137. MarchiniM. BaronciniM. BergaminiG. CeroniP. D'AngelantonioM. FranchiP. LucariniM. NegriF. SzrederT. VenturiM. 2017 Hierarchical growth of supramolecular structures driven by pimerization of tetrahedrally arranged bipyridinium units Chem.-Eur. J. 23 26 6380 6390 10.1002/chem.201700137 28263437 Open DOISearch in Google Scholar

Kocia, R. (2019). Pulse radiolysis studies of intermediates derived from p-terphenyl in the oxygenated methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid. Int. J. Chem. Kinet., 51(12), 958–964. DOI: 10.1002/kin.21323. KociaR. 2019 Pulse radiolysis studies of intermediates derived from p-terphenyl in the oxygenated methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid Int. J. Chem. Kinet. 51 12 958 964 10.1002/kin.21323 Open DOISearch in Google Scholar

Szreder, T., Kisala, J., Bojanowska-Czajka, A., Kasperkowiak, M., Pogocki, D., Bobrowski, K., & Trojanowicz, M. (2022). High energy radiation – induced cooperative reductive/oxidative mechanism of perfluorooctanoate anion (PFOA) decomposition in aqueous solution. Chemosphere, 295, 133920. DOI: 10.1016/j.chemosphere.2022.133920. SzrederT. KisalaJ. Bojanowska-CzajkaA. KasperkowiakM. PogockiD. BobrowskiK. TrojanowiczM. 2022 High energy radiation – induced cooperative reductive/oxidative mechanism of perfluorooctanoate anion (PFOA) decomposition in aqueous solution Chemosphere 295 133920 10.1016/j.chemosphere.2022.133920 35143857 Open DOISearch in Google Scholar

Zimek, Z. (2019). The INCT electron accelerator research facilities. In A. G. Chmielewski & Z. Zimek (Eds.), Electron accelerators for research, industry and en ironmentthe INCT perspective (pp. 7–30). Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej. ZimekZ. 2019 The INCT electron accelerator research facilities In ChmielewskiA. G. ZimekZ. (Eds.), Electron accelerators for research, industry and en ironment – the INCT perspective 7 30 Warsaw Oficyna Wydawnicza Politechniki Warszawskiej Search in Google Scholar

Beck, G. (1976). Operation of a 1P28 photomultiplier with subnanosecond response time. Rev. Sci. Instrum., 47(5), 537–541. DOI: 10.1063/1.1134685. BeckG. 1976 Operation of a 1P28 photomultiplier with subnanosecond response time Rev. Sci. Instrum. 47 5 537 541 10.1063/1.1134685 Open DOISearch in Google Scholar

Chatgilialoglu, C., Krokidis, M. G., Masi, A., Barata-Vallejo, S., Ferreri, C., Terzidis, M. A., Szreder, T., & Bobrowski, K. (2019). New insights into the reaction paths of hydroxyl radicals with purine moieties in DNA and double-stranded oligodeoxynucleotides. Molecules, 24(21), 3860. DOI: 10.3390/molecules24213860. ChatgilialogluC. KrokidisM. G. MasiA. Barata-VallejoS. FerreriC. TerzidisM. A. SzrederT. BobrowskiK. 2019 New insights into the reaction paths of hydroxyl radicals with purine moieties in DNA and double-stranded oligodeoxynucleotides Molecules 24 21 3860 10.3390/molecules24213860 686519531717733 Open DOISearch in Google Scholar

Janata, E. (1982). Pulse-radiolysis conductivity measurements in aqueous-solutions with nanosecond time resolution. Radiat. Phys. Chem., 19(1), 17–21. DOI: 10.1016/0146-5724(82)90043-7. JanataE. 1982 Pulse-radiolysis conductivity measurements in aqueous-solutions with nanosecond time resolution Radiat. Phys. Chem. 19 1 17 21 10.1016/0146-5724(82)90043-7 Open DOISearch in Google Scholar

eISSN:
1508-5791
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other