Accès libre

Comparison of dose distributions in target areas and organs at risk in conformal and VMAT techniques and dose verifications with the use of thermoluminescence dosimetry

À propos de cet article

Citez

1. Li, J. -S., Pawlicki, T., Deng, J., Jiang, S. -B., Mok, E., & Ma, C. -M. (2000). Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys. Med. Biol., 45(10), 2969–2985. DOI: S0031-9155(00)12262-6.10.1088/0031-9155/45/10/31611049183Search in Google Scholar

2. Oelkfe, U., & Scholz, C. (2006). Dose calculation algorithms. In W. Schlegel, T. Bortfeld, & A. -L. Grosu (Eds.), New technologies in radiation oncology (pp.187–196). Berlin-Heidelberg: Springer.Search in Google Scholar

3. Wu, V. -W., Tse, T. -K., Ho, C. -L., & Yeung, E. -C. (2013). A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning. Med. Phys., 38(2), 209–214. DOI: 10.1016/j.meddos.2013.02.001.10.1016/j.meddos.2013.02.00123535249Search in Google Scholar

4. International Atomic Energy Agency. (2004). Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: IAEA. (TRS No 430).Search in Google Scholar

5. Rogers, D. -W. -O., & Bielajew, A. -F. (1990). Monte Carlo techniques of electron and photon transport for radiation dosimetry. In K. -R. Kase, B. -E. Bjarngard, & F. -H. Attix (Eds.), The dosimetry of ionizing radiation (pp. 427–540). Canada: Academic Press.Search in Google Scholar

6. Ahnesjö, A. (1989). Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys., 16(4), 577–592. DOI: 10.1118/1.596360.10.1118/1.5963602770632Search in Google Scholar

7. Krieger, T., & Sauer, O. -A. (2005). Monte Carlo versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol., 50(5), 859–868. DOI: 10.1088/0031-9155/50/5/010.10.1088/0031-9155/50/5/01015798260Search in Google Scholar

8. Mijnheer, B., Olszewska, A., Fiorino, C., & Welleweerd, H. (2004). Quality assurance of treatment planning systems, practical examples for non-IMRT photon beams. Brussels: European Society of Therapeutic Radiation Oncology.Search in Google Scholar

9. Haertl, P. M., Pohl, F., Weidner, K., Groeger, Ch., Koelbl, O., & Dobler, B. (2013). Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy. Med. Dosim., 38(1), 1–4. DOI: 10.1016/j.meddos.2012.04.003.10.1016/j.meddos.2012.04.00322727550Search in Google Scholar

10. Xu, Y., Deng, W., Yang, S., Li, P., Kong, Y., Tian, Y., Liao, Z., & Chen, M. (2017). Dosimetric comparison of the helical tomotherapy, volumetric modulated arc therapy and fixed-field intensity-modulated radio-therapy for stage IIB-IIIB nonsmall cell lung cancer. Sci. Rep., 7(1), 14863. DOI: 10.1038/s41598-017-14629-w.10.1038/s41598-017-14629-w566586529093491Search in Google Scholar

11. Abo-Madyan, Y., Aziz, M. H., Aly, M. M. O. M., Schneider, F., Sperk, E., Clausen, S., Giordano, F. A., Herskind, C., Steil, V., Wenz, F., & Glatting, G. (2014). Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother. Oncol., 110(3), 471–476. DOI: 10.1016/j.radonc.2013.12.002.10.1016/j.radonc.2013.12.00224444525Search in Google Scholar

12. Rehman, J. U., Isa, M., Ahmad, N., Nasar, G., Asghar, H. M., Gilani, Z. A., Chow, J. C., Afzal, M., & Ibbott, G. S. (2018). Dosimetric, radiobiological and secondary cancer risk evaluation in head-and-neck three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and volu-metric modulated arc therapy: A phantom study. J. Med. Phys., 43(2), 129–135. DOI: 10.4103/jmp. JMP_106_17.Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other