Acceso abierto

Comparison of dose distributions in target areas and organs at risk in conformal and VMAT techniques and dose verifications with the use of thermoluminescence dosimetry


Cite

1. Li, J. -S., Pawlicki, T., Deng, J., Jiang, S. -B., Mok, E., & Ma, C. -M. (2000). Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys. Med. Biol., 45(10), 2969–2985. DOI: S0031-9155(00)12262-6.10.1088/0031-9155/45/10/31611049183Search in Google Scholar

2. Oelkfe, U., & Scholz, C. (2006). Dose calculation algorithms. In W. Schlegel, T. Bortfeld, & A. -L. Grosu (Eds.), New technologies in radiation oncology (pp.187–196). Berlin-Heidelberg: Springer.Search in Google Scholar

3. Wu, V. -W., Tse, T. -K., Ho, C. -L., & Yeung, E. -C. (2013). A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning. Med. Phys., 38(2), 209–214. DOI: 10.1016/j.meddos.2013.02.001.10.1016/j.meddos.2013.02.00123535249Search in Google Scholar

4. International Atomic Energy Agency. (2004). Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: IAEA. (TRS No 430).Search in Google Scholar

5. Rogers, D. -W. -O., & Bielajew, A. -F. (1990). Monte Carlo techniques of electron and photon transport for radiation dosimetry. In K. -R. Kase, B. -E. Bjarngard, & F. -H. Attix (Eds.), The dosimetry of ionizing radiation (pp. 427–540). Canada: Academic Press.Search in Google Scholar

6. Ahnesjö, A. (1989). Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys., 16(4), 577–592. DOI: 10.1118/1.596360.10.1118/1.5963602770632Search in Google Scholar

7. Krieger, T., & Sauer, O. -A. (2005). Monte Carlo versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol., 50(5), 859–868. DOI: 10.1088/0031-9155/50/5/010.10.1088/0031-9155/50/5/01015798260Search in Google Scholar

8. Mijnheer, B., Olszewska, A., Fiorino, C., & Welleweerd, H. (2004). Quality assurance of treatment planning systems, practical examples for non-IMRT photon beams. Brussels: European Society of Therapeutic Radiation Oncology.Search in Google Scholar

9. Haertl, P. M., Pohl, F., Weidner, K., Groeger, Ch., Koelbl, O., & Dobler, B. (2013). Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy. Med. Dosim., 38(1), 1–4. DOI: 10.1016/j.meddos.2012.04.003.10.1016/j.meddos.2012.04.00322727550Search in Google Scholar

10. Xu, Y., Deng, W., Yang, S., Li, P., Kong, Y., Tian, Y., Liao, Z., & Chen, M. (2017). Dosimetric comparison of the helical tomotherapy, volumetric modulated arc therapy and fixed-field intensity-modulated radio-therapy for stage IIB-IIIB nonsmall cell lung cancer. Sci. Rep., 7(1), 14863. DOI: 10.1038/s41598-017-14629-w.10.1038/s41598-017-14629-w566586529093491Search in Google Scholar

11. Abo-Madyan, Y., Aziz, M. H., Aly, M. M. O. M., Schneider, F., Sperk, E., Clausen, S., Giordano, F. A., Herskind, C., Steil, V., Wenz, F., & Glatting, G. (2014). Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother. Oncol., 110(3), 471–476. DOI: 10.1016/j.radonc.2013.12.002.10.1016/j.radonc.2013.12.00224444525Search in Google Scholar

12. Rehman, J. U., Isa, M., Ahmad, N., Nasar, G., Asghar, H. M., Gilani, Z. A., Chow, J. C., Afzal, M., & Ibbott, G. S. (2018). Dosimetric, radiobiological and secondary cancer risk evaluation in head-and-neck three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and volu-metric modulated arc therapy: A phantom study. J. Med. Phys., 43(2), 129–135. DOI: 10.4103/jmp. JMP_106_17.Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other