1. bookVolume 65 (2021): Edition 2 (December 2021)
Détails du magazine
License
Format
Magazine
eISSN
2545-2819
Première parution
30 Sep 2018
Périodicité
2 fois par an
Langues
Anglais
access type Accès libre

Application of an Improved Empirical Model for Rheology Prediction of Cement Pastes Modified with Filler from Manufactured Sand

Publié en ligne: 30 Dec 2021
Volume & Edition: Volume 65 (2021) - Edition 2 (December 2021)
Pages: 1 - 18
Reçu: 26 Mar 2021
Accepté: 29 Nov 2021
Détails du magazine
License
Format
Magazine
eISSN
2545-2819
Première parution
30 Sep 2018
Périodicité
2 fois par an
Langues
Anglais
Abstract

There is a need for simple but precise prediction models for proportioning concrete with manufactured sand, for use in ready-mix concrete production. For the last two decades, the particle-matrix model has been used in Norway for proportioning and prediction of concrete flow based on the properties and proportions of two concrete phases: coarse particles and filler modified cement paste (matrix). This paper presents experimental testing of 117 cement pastes of which 107 contain filler, i.e. particles < 125 microns, from manufactured sand. Based on compositions and properties of ingoing materials in these mixes, an empirical equation is developed that predicts the rheological properties plastic viscosity, yield stress, flow resistance ratio and mini slump flow. Optimization by regression analysis provides a practical microproportioning equation that readily can be used as input in concrete proportioning with the particle-matrix model. The equation provides a coefficient of determination R2 = 0.98 for plastic viscosity, R2 = 0.95 for mini slump flow, R2 = 0.91 for flow resistance ratio and R2 = 0.80 for yield stress.

Keywords

1. Ferraris C F, Obla K H & Hill R: “The Influence of Mineral Admixtures on the Rheology of Cement Paste and Concrete”. Cement and Concrete Research, Vol. 31, No. 2, 2001, pp. 245-255.10.1016/S0008-8846(00)00454-3 Search in Google Scholar

2. Krieger I M & Dougherty T J: “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres”. Transactions of the society of rheology III, 1959, pp. 137-152.10.1122/1.548848 Search in Google Scholar

3. Chong J S, Christiansen E B & Baer A D: “Rheology of Concentrated Suspensions”. Journal of applied polymer science, Vol. 15, 1971, pp. 2007-2021.10.1002/app.1971.070150818 Search in Google Scholar

4. Mooney M: “The Viscosity of a Concentrated Suspension of Spherical Particles”. Journal of Colloid Interface Science, Vol. 6, No. 2, 1951, pp. 162-170.10.1016/0095-8522(51)90036-0 Search in Google Scholar

5. Eilers H: “Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration”. (“The Viscosity of Emulsions of Highly Viscous Materials as a Function of Concentration”). Kolloid Zeitschrift, Vol. 97, No. 3, 1941, pp. 313-321 (in German).10.1007/BF01503023 Search in Google Scholar

6. Quemada D: “Rheology of Concentrated Disperse Systems and Minimum Energy Dissipation Principle”. Rheologica Acta, Vol. 16, 1977, pp. 82-94.10.1007/BF01516932 Search in Google Scholar

7. Robinson J V: “The Viscosity of Suspensions of Spheres”. Journal of Physical Chemistry, Vol. 53, No. 7, 1949, pp. 1042-1056.10.1021/j150472a007 Search in Google Scholar

8. Spangenberg J, Scherer G W, Hopkins A B & Torquato S: “Viscosity of Bimodal Suspensions with Hard Spherical Particles”. Journal of Applied Physics, Vol. 116, No. 18, 2014.10.1063/1.4901463 Search in Google Scholar

9. Damineli B L, John V N, Lagerblad B & Pileggi R G: “Viscosity Prediction of Cement-Filler Suspensions using Interference Model: A Route for Binder Efficiency Enhancement”, Cement and Concrete Research, Vol. 84, 2016, pp. 8-19.10.1016/j.cemconres.2016.02.012 Search in Google Scholar

10. Buscall R, McGowan I J, Mills P D A, Stewart R F, Sutton D, White L R & Yates G E: “The Rheology of Strongly-Flocculated Suspensions”. Journal of Non-Newtonian Fluid Mechanics, Vol. 24, 1987, pp. 183-202.10.1016/0377-0257(87)85009-7 Search in Google Scholar

11. Kapur P C, Scales P J, Boger D V & Healy T W: “Yield Stress of Suspensions Loaded with Size Distributed Particles”. AICHE Journal, Vol. 43, 1997, pp. 1171-1179.10.1002/aic.690430506 Search in Google Scholar

12. Scales P J, Johnson S B, Healy T W & Kapur P C: “Shear Yield Stress of Partially Flocculated Colloidal Suspensions”. AICHE Journal, Vol. 44, 1998, pp. 538–544.10.1002/aic.690440305 Search in Google Scholar

13. Zhou Z, Solomon M J, Scales P J & Boger D V: “The Yield Stress of Concentrated Flocculated Suspensions of Size Distributed Particles”. Journal of Rheology, Vol. 43, 1999, pp. 651-671.10.1122/1.551029 Search in Google Scholar

14. Flatt R J & Bowen P: “Yodel: A Yield Stress Model for Suspensions”. Journal of the American Ceramic Society, Vol. 89, No. 4, 2006, pp.1244-1256.10.1111/j.1551-2916.2005.00888.x Search in Google Scholar

15. Powers T C: “The Properties of Fresh Concrete”. Wiley & Sons, New York, USA, 1968, 664 pp. Search in Google Scholar

16. Cepuritis R, Jacobsen S, Smeplass S, Mørtsell E, Wigum B J & Ng S: “Influence of Crushed Aggregate Fines with Micro-Proportioned Particle Size Distributions on Rheology of Cement Paste”. Cement and Concrete Composites, Vol. 80, 2017, pp. 64-79.10.1016/j.cemconcomp.2017.02.012 Search in Google Scholar

17. Skare E L, Cepuritis R, Spangenberg J, Ramenskiy E, Mørtsell E, Smeplass S, Jacobsen S: “Microproportioning Paste with Crushed Aggregate Filler by Use of Specific Surface Area”, Proceedings, The 15th International Congress on the Chemistry of Cement, Prague, Czech Republic, 2019. Ed. Gemrich J. ISSN 2523-935X, 10 pp. Search in Google Scholar

18. Mørtsell E: “Modellering av Delmaterialenes Betydning for Betongens Konsistens”. (“Modelling the Effect of Concrete Part Materials on Concrete Consistency“). (PhD Thesis). Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, Norway, 1996, 301 pp. (In Norwegian). Search in Google Scholar

19. Cepuritis R: “Development of Crushed Sand for Concrete Production with Micro-proportioning”. (PhD Thesis). Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, Norway, 2016, 386 pp. Search in Google Scholar

20. Bengtsson M & Evertsson CM: “Measuring characteristics of aggregate material from vertical shaft impact crushers”. Minerals Engineering, Vol. 19 (15), 2006, pp. 1479-1486.10.1016/j.mineng.2006.08.003 Search in Google Scholar

21. Wallevik O.H: “Den ferske betongens reologi og anvendelse på betong med og uten tilsetning av silikastøv». (Rheology of Fresh Concrete and Application to Concrete With and Without Addition of Silica Fume”). (PhD Thesis) Norges tekniske høgskole, Trondheim, Norway, 1990, 185 pp. Search in Google Scholar

22. Sheiat S, Ranjbar N, Frellsen J, Skare E L, Cepuritis R, Jacobsen S & Spangenberg J: “Neural Network Predictions of the Simulated Rheological Response of Cement Paste in the FlowCyl”. Neural Compututing & Applications, Vol. 33, 2021, pp. 13027–13037.10.1007/s00521-021-05999-4 Search in Google Scholar

23. Great Wall Mineral, From the GWM Selection [Internet], <http://greatwallmineral.com/index.asp?Id=3> [Read 05.04.19] Search in Google Scholar

24. Jacobsen S, Maage M, Smeplass S, Kjellsen K O, Sellevold E J, Lindgård J, Cepuritis R, Myrdal R, Bjøntegaard Ø, Geiker M et al.: “TKT 4215 Concrete Technology 1”, Compendium, Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, Norway, 2016. Search in Google Scholar

25. Ng S, Mujica H & Smeplass S: “Design of a Simple and Cost-Efficient Mixer for Matrix Rheology Testing”, Nordic Concrete Research, Vol. 51, No. 3, 2014, pp. 15-28. Search in Google Scholar

26. Spangenberg J, da Silva W R L, Comminal R, Mollah M T, Andersen T J & Stang H: “Numerical simulation of multi-layer 3D concrete printing”, RILEM Technical Letters 6, 2021, pp. 119-123.10.21809/rilemtechlett.2021.142 Search in Google Scholar

27. Comminal R, da Silva W R L, Andersen T J, Stang H & Spangenberg J: “Modelling of 3D concrete printing based on computational fluid dynamics”, Cement and Concrete Research, Vol. 138, 106256, 2020, 12 pages.10.1016/j.cemconres.2020.106256 Search in Google Scholar

28. Comminal R, da Silva W R L, Andersen T J, Stang H & Spangenberg J: “Influence of processing parameters on the layer geometry in 3D concrete printing: experiments and modelling”, RILEM international Conference on Concrete and Digital Fabrication, 2020, pp.852-862.10.1007/978-3-030-49916-7_83 Search in Google Scholar

29. Rosquoëta F, Alexis A, Khelidj A & Phelipot A: “Experimental Study of Cement Grout: Rheological Behavior and Sedimentation”. Cement and Concrete Research, Vol. 33, 2003, pp. 713-722.10.1016/S0008-8846(02)01036-0 Search in Google Scholar

30. Cepuritis R, Skare E L, Ramenskiy E, Mørtsell E, Smeplass S, Li S, Jacobsen S & Spangenberg J: “Analysing Limitations of the FlowCyl as a One-Point Viscometer Test for Cement Paste”. Construction and Building Materials, Vol. 218, 2019, pp. 333-340.10.1016/j.conbuildmat.2019.05.127 Search in Google Scholar

31. Skare E L, Jacobsen S, Cepuritis R, Smeplass S & Spangenberg J: “Decreasing the Magnitude of Shear Rates in the FlowCyl”. Proceedings, 5th fib Congress, Melbourne, Australia, 2018. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo