Accès libre

Adaptive Measurement Selection for Scalable Distributed Graph Optimization in Multi-UAV Relative Positioning

 et   
28 août 2025
À propos de cet article

Citez
Télécharger la couverture

Sun, G., He, L., Sun, Z., Wu, Q., Liang, S., Li, J., Niyato, D., Leung, V. C. (2024). Joint task offloading and resource allocation in aerial-terrestrial UAV networks with edge and fog computing for post-disaster rescue. IEEE Transactions on Mobile Computing, 23 (9), 8582–8600. https://doi.org/10.1109/TMC.2024.3350886. SunG. HeL. SunZ. WuQ. LiangS. LiJ. NiyatoD. LeungV. C. 2024 Joint task offloading and resource allocation in aerial-terrestrial UAV networks with edge and fog computing for post-disaster rescue IEEE Transactions on Mobile Computing 23 9 8582 8600 https://doi.org/10.1109/TMC.2024.3350886. Search in Google Scholar

Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., Pham, Q.-V. (2021). Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21 (16), 17608–17619. https://doi.org/10.1109/JSEN.2021.3049471. MaddikuntaP. K. R. HakakS. AlazabM. BhattacharyaS. GadekalluT. R. KhanW. Z. PhamQ.-V. 2021 Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges IEEE Sensors Journal 21 16 17608 17619 https://doi.org/10.1109/JSEN.2021.3049471. Search in Google Scholar

Liu, B., Zhang, W., Chen, W., Huang, H., Guo, S. (2020). Online computation offloading and traffic routing for UAV swarms in edge-cloud computing. IEEE Transactions on Vehicular Technology, 69 (8), 8777–8791. https://doi.org/10.1109/TVT.2020.2994541. LiuB. ZhangW. ChenW. HuangH. GuoS. 2020 Online computation offloading and traffic routing for UAV swarms in edge-cloud computing IEEE Transactions on Vehicular Technology 69 8 8777 8791 https://doi.org/10.1109/TVT.2020.2994541. Search in Google Scholar

Irfan, M., Dalai, S., Trslic, P., Santos, M. C., Riordan, J., Dooly, G. (2024). LGVINS: LiDAR-GPS-visual and inertial system based multi-sensor fusion for smooth and reliable UAV state estimation. IEEE Transactions on Intelligent Vehicles. https://doi.org/10.1109/TIV.2024.3469551. IrfanM. DalaiS. TrslicP. SantosM. C. RiordanJ. DoolyG. 2024 LGVINS: LiDAR-GPS-visual and inertial system based multi-sensor fusion for smooth and reliable UAV state estimation IEEE Transactions on Intelligent Vehicles https://doi.org/10.1109/TIV.2024.3469551. Search in Google Scholar

Choutri, K., Lagha, M., Meshoul, S., Shaiba, H., Chegrani, A., Yahiaoui, M. (2024). Vision-based UAV detection and localization to indoor positioning system. Sensors, 24 (13), 4121. https://doi.org/10.3390/s24134121. ChoutriK. LaghaM. MeshoulS. ShaibaH. ChegraniA. YahiaouiM. 2024 Vision-based UAV detection and localization to indoor positioning system Sensors 24 13 4121 https://doi.org/10.3390/s24134121. Search in Google Scholar

Teixeira, L., Maffra, F., Moos, M., Chli, M. (2018). VI-RPE: Visual-inertial relative pose estimation for aerial vehicles. IEEE Robotics and Automation Letters, 3 (4), 2770–2777. https://doi.org/10.1109/LRA.2018.2837687. TeixeiraL. MaffraF. MoosM. ChliM. 2018 VI-RPE: Visual-inertial relative pose estimation for aerial vehicles IEEE Robotics and Automation Letters 3 4 2770 2777 https://doi.org/10.1109/LRA.2018.2837687. Search in Google Scholar

Yang, X., Wang, J., Song, D., Feng, B., Ye, H. (2021). A novel NLOS error compensation method based IMU for UWB indoor positioning system. IEEE Sensors Journal, 21 (9), 11203–11212. https://doi.org/10.1109/JSEN.2021.3061468. YangX. WangJ. SongD. FengB. YeH. 2021 A novel NLOS error compensation method based IMU for UWB indoor positioning system IEEE Sensors Journal 21 9 11203 11212 https://doi.org/10.1109/JSEN.2021.3061468. Search in Google Scholar

Wallace, L., Lucieer, A., Watson, C., Turner, D. (2012). Development of a UAV-LiDAR system with application to forest inventory. Remote sensing, 4 (6), 1519–1543. https://doi.org/10.3390/rs4061519. WallaceL. LucieerA. WatsonC. TurnerD. 2012 Development of a UAV-LiDAR system with application to forest inventory Remote sensing 4 6 1519 1543 https://doi.org/10.3390/rs4061519. Search in Google Scholar

Wu, Y., Guadagnino, T., Wiesmann, L., Klingbeil, L., Stachniss, C., Kuhlmann, H. (2024). LIO-EKF: High frequency LiDAR-inertial odometry using extended Kalman filters. In 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 13741–13747. https://doi.org/10.1109/ICRA57147.2024.10610667. WuY. GuadagninoT. WiesmannL. KlingbeilL. StachnissC. KuhlmannH. 2024 LIO-EKF: High frequency LiDAR-inertial odometry using extended Kalman filters In 2024 IEEE International Conference on Robotics and Automation (ICRA) IEEE 13741 13747 https://doi.org/10.1109/ICRA57147.2024.10610667. Search in Google Scholar

Tang, X., Yang, L., Wang, D., Li, W., Xin, D., Jia, H. (2025). A collaborative navigation algorithm for UAV Ad Hoc network based on improved sequence quadratic programming and unscented Kalman filtering in GNSS denied area. Measurement, 242, 115977. https://doi.org/10.1016/j.measurement.2024.115977. TangX. YangL. WangD. LiW. XinD. JiaH. 2025 A collaborative navigation algorithm for UAV Ad Hoc network based on improved sequence quadratic programming and unscented Kalman filtering in GNSS denied area Measurement 242 115977 https://doi.org/10.1016/j.measurement.2024.115977. Search in Google Scholar

Qiu, Z., Wang, S., Hu, P., Guo, L. (2024). Outlier-robust extended Kalman filtering for bioinspired integrated navigation system. IEEE Transactions on Automation Science and Engineering, 21 (4), 5881–5894. https://doi.org/10.1109/TASE.2023.3319508. QiuZ. WangS. HuP. GuoL. 2024 Outlier-robust extended Kalman filtering for bioinspired integrated navigation system IEEE Transactions on Automation Science and Engineering 21 4 5881 5894 https://doi.org/10.1109/TASE.2023.3319508. Search in Google Scholar

Xu, H., Zhang, Y., Zhou, B., Wang, L., Yao, X., Meng, G., Shen, S. (2022). Omni-swarm: A decentralized omnidirectional visual–inertial–UWB state estimation system for aerial swarms. IEEE Transactions on Robotics, 38 (6), 3374–3394. https://doi.org/10.1109/TRO.2022.3182503. XuH. ZhangY. ZhouB. WangL. YaoX. MengG. ShenS. 2022 Omni-swarm: A decentralized omnidirectional visual–inertial–UWB state estimation system for aerial swarms IEEE Transactions on Robotics 38 6 3374 3394 https://doi.org/10.1109/TRO.2022.3182503. Search in Google Scholar

Ziegler, T., Karrer, M., Schmuck, P., Chli, M. (2021). Distributed formation estimation via pairwise distance measurements. IEEE Robotics and Automation Letters, 6 (2), 3017–3024. https://doi.org/10.1109/LRA.2021.3062347. ZieglerT. KarrerM. SchmuckP. ChliM. 2021 Distributed formation estimation via pairwise distance measurements IEEE Robotics and Automation Letters 6 2 3017 3024 https://doi.org/10.1109/LRA.2021.3062347. Search in Google Scholar

Horyna, J., Baca, T., Walter, V., Albani, D., Hert, D., Ferrante, E., Saska, M. (2023). Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication. Autonomous Robots, 47 (1), 77–93. https://doi.org/10.1007/s10514-022-10066-5. HorynaJ. BacaT. WalterV. AlbaniD. HertD. FerranteE. SaskaM. 2023 Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication Autonomous Robots 47 1 77 93 https://doi.org/10.1007/s10514-022-10066-5. Search in Google Scholar

Yang, P., Ye, G.-Y., Shao, C.-L., Yang, S.-L., Huang, Z.-X. (2024). A distributed factor graph model solving method for cooperative localization of UAV swarms. Measurement Science and Technology, 36 (1), 016326. https://doi.org/10.1088/1361-6501/ad91d6. YangP. YeG.-Y. ShaoC.-L. YangS.-L. HuangZ.-X. 2024 A distributed factor graph model solving method for cooperative localization of UAV swarms Measurement Science and Technology 36 1 016326 https://doi.org/10.1088/1361-6501/ad91d6. Search in Google Scholar

Cano, J., Pages, G., Chaumette, E., Le Ny, J. (2022). Optimal localizability criterion for positioning with distance-deteriorated relative measurements. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 947–953. https://doi.org/10.1109/IROS47612.2022.9981718. CanoJ. PagesG. ChaumetteE. Le NyJ. 2022 Optimal localizability criterion for positioning with distance-deteriorated relative measurements In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE 947 953 https://doi.org/10.1109/IROS47612.2022.9981718. Search in Google Scholar

Rui, Y., Zhu, C., Chen, J., Zhou, Z., Pu, Y. (2024). Study on sensor network optimization for MS/AE monitoring system using fisher information and improved encoding framework. IEEE Sensors Journal, 24 (14). https://doi.org/10.1109/JSEN.2024.3383864. RuiY. ZhuC. ChenJ. ZhouZ. PuY. 2024 Study on sensor network optimization for MS/AE monitoring system using fisher information and improved encoding framework IEEE Sensors Journal 24 14 https://doi.org/10.1109/JSEN.2024.3383864. Search in Google Scholar

Kim, S.-H., Cho, C. (2024). Effective independence in optimal sensor placement associated with general fisher information involving full error covariance matrix. Mechanical Systems and Signal Processing, 212, 111263. https://doi.org/10.1016/j.ymssp.2024.111263. KimS.-H. ChoC. 2024 Effective independence in optimal sensor placement associated with general fisher information involving full error covariance matrix Mechanical Systems and Signal Processing 212 111263 https://doi.org/10.1016/j.ymssp.2024.111263. Search in Google Scholar

Ni, H., Zhu, Q., Hua, B., Mao, K., Pan, Y., Ali, F., Zhong, W., Chen, X. (2024). Path loss and shadowing for UAV-to-ground UWB channels incorporating the effects of built-up areas and airframe. IEEE Transactions on Intelligent Transportation Systems, 25 (11), 17066–17077. https://doi.org/10.1109/TITS.2024.3418952. NiH. ZhuQ. HuaB. MaoK. PanY. AliF. ZhongW. ChenX. 2024 Path loss and shadowing for UAV-to-ground UWB channels incorporating the effects of built-up areas and airframe IEEE Transactions on Intelligent Transportation Systems 25 11 17066 17077 https://doi.org/10.1109/TITS.2024.3418952. Search in Google Scholar

Zhang, K., Chen, P., Ma, T., Gao, S. (2022). On-demand precise tracking for energy-constrained UAVs in underground coal mines. IEEE Transactions on Instrumentation and Measurement, 71, 5500814. https://doi.org/10.1109/TIM.2022.3146925. ZhangK. ChenP. MaT. GaoS. 2022 On-demand precise tracking for energy-constrained UAVs in underground coal mines IEEE Transactions on Instrumentation and Measurement 71 5500814 https://doi.org/10.1109/TIM.2022.3146925. Search in Google Scholar

Xiong, C., Lu, W., Xiong, H., Ding, H., He, Q., Zhao, D., Wan, J., Xing, F., You, Z. (2024). Onboard cooperative relative positioning system for Micro-UAV swarm based on UWB/Vision/INS fusion through distributed graph optimization. Measurement, 234, 114897. https://doi.org/10.1016/j.measurement.2024.114897. XiongC. LuW. XiongH. DingH. HeQ. ZhaoD. WanJ. XingF. YouZ. 2024 Onboard cooperative relative positioning system for Micro-UAV swarm based on UWB/Vision/INS fusion through distributed graph optimization Measurement 234 114897 https://doi.org/10.1016/j.measurement.2024.114897. Search in Google Scholar