This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Sun, G., He, L., Sun, Z., Wu, Q., Liang, S., Li, J., Niyato, D., Leung, V. C. (2024). Joint task offloading and resource allocation in aerial-terrestrial UAV networks with edge and fog computing for post-disaster rescue. IEEE Transactions on Mobile Computing, 23 (9), 8582–8600. https://doi.org/10.1109/TMC.2024.3350886.SunG.HeL.SunZ.WuQ.LiangS.LiJ.NiyatoD.LeungV. C.2024Joint task offloading and resource allocation in aerial-terrestrial UAV networks with edge and fog computing for post-disaster rescueIEEE Transactions on Mobile Computing23985828600https://doi.org/10.1109/TMC.2024.3350886.Search in Google Scholar
Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., Pham, Q.-V. (2021). Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21 (16), 17608–17619. https://doi.org/10.1109/JSEN.2021.3049471.MaddikuntaP. K. R.HakakS.AlazabM.BhattacharyaS.GadekalluT. R.KhanW. Z.PhamQ.-V.2021Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challengesIEEE Sensors Journal21161760817619https://doi.org/10.1109/JSEN.2021.3049471.Search in Google Scholar
Liu, B., Zhang, W., Chen, W., Huang, H., Guo, S. (2020). Online computation offloading and traffic routing for UAV swarms in edge-cloud computing. IEEE Transactions on Vehicular Technology, 69 (8), 8777–8791. https://doi.org/10.1109/TVT.2020.2994541.LiuB.ZhangW.ChenW.HuangH.GuoS.2020Online computation offloading and traffic routing for UAV swarms in edge-cloud computingIEEE Transactions on Vehicular Technology69887778791https://doi.org/10.1109/TVT.2020.2994541.Search in Google Scholar
Irfan, M., Dalai, S., Trslic, P., Santos, M. C., Riordan, J., Dooly, G. (2024). LGVINS: LiDAR-GPS-visual and inertial system based multi-sensor fusion for smooth and reliable UAV state estimation. IEEE Transactions on Intelligent Vehicles. https://doi.org/10.1109/TIV.2024.3469551.IrfanM.DalaiS.TrslicP.SantosM. C.RiordanJ.DoolyG.2024LGVINS: LiDAR-GPS-visual and inertial system based multi-sensor fusion for smooth and reliable UAV state estimationIEEE Transactions on Intelligent Vehicleshttps://doi.org/10.1109/TIV.2024.3469551.Search in Google Scholar
Choutri, K., Lagha, M., Meshoul, S., Shaiba, H., Chegrani, A., Yahiaoui, M. (2024). Vision-based UAV detection and localization to indoor positioning system. Sensors, 24 (13), 4121. https://doi.org/10.3390/s24134121.ChoutriK.LaghaM.MeshoulS.ShaibaH.ChegraniA.YahiaouiM.2024Vision-based UAV detection and localization to indoor positioning systemSensors24134121https://doi.org/10.3390/s24134121.Search in Google Scholar
Teixeira, L., Maffra, F., Moos, M., Chli, M. (2018). VI-RPE: Visual-inertial relative pose estimation for aerial vehicles. IEEE Robotics and Automation Letters, 3 (4), 2770–2777. https://doi.org/10.1109/LRA.2018.2837687.TeixeiraL.MaffraF.MoosM.ChliM.2018VI-RPE: Visual-inertial relative pose estimation for aerial vehiclesIEEE Robotics and Automation Letters3427702777https://doi.org/10.1109/LRA.2018.2837687.Search in Google Scholar
Yang, X., Wang, J., Song, D., Feng, B., Ye, H. (2021). A novel NLOS error compensation method based IMU for UWB indoor positioning system. IEEE Sensors Journal, 21 (9), 11203–11212. https://doi.org/10.1109/JSEN.2021.3061468.YangX.WangJ.SongD.FengB.YeH.2021A novel NLOS error compensation method based IMU for UWB indoor positioning systemIEEE Sensors Journal2191120311212https://doi.org/10.1109/JSEN.2021.3061468.Search in Google Scholar
Wallace, L., Lucieer, A., Watson, C., Turner, D. (2012). Development of a UAV-LiDAR system with application to forest inventory. Remote sensing, 4 (6), 1519–1543. https://doi.org/10.3390/rs4061519.WallaceL.LucieerA.WatsonC.TurnerD.2012Development of a UAV-LiDAR system with application to forest inventoryRemote sensing4615191543https://doi.org/10.3390/rs4061519.Search in Google Scholar
Wu, Y., Guadagnino, T., Wiesmann, L., Klingbeil, L., Stachniss, C., Kuhlmann, H. (2024). LIO-EKF: High frequency LiDAR-inertial odometry using extended Kalman filters. In 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 13741–13747. https://doi.org/10.1109/ICRA57147.2024.10610667.WuY.GuadagninoT.WiesmannL.KlingbeilL.StachnissC.KuhlmannH.2024LIO-EKF: High frequency LiDAR-inertial odometry using extended Kalman filtersIn2024 IEEE International Conference on Robotics and Automation (ICRA)IEEE1374113747https://doi.org/10.1109/ICRA57147.2024.10610667.Search in Google Scholar
Tang, X., Yang, L., Wang, D., Li, W., Xin, D., Jia, H. (2025). A collaborative navigation algorithm for UAV Ad Hoc network based on improved sequence quadratic programming and unscented Kalman filtering in GNSS denied area. Measurement, 242, 115977. https://doi.org/10.1016/j.measurement.2024.115977.TangX.YangL.WangD.LiW.XinD.JiaH.2025A collaborative navigation algorithm for UAV Ad Hoc network based on improved sequence quadratic programming and unscented Kalman filtering in GNSS denied areaMeasurement242115977https://doi.org/10.1016/j.measurement.2024.115977.Search in Google Scholar
Qiu, Z., Wang, S., Hu, P., Guo, L. (2024). Outlier-robust extended Kalman filtering for bioinspired integrated navigation system. IEEE Transactions on Automation Science and Engineering, 21 (4), 5881–5894. https://doi.org/10.1109/TASE.2023.3319508.QiuZ.WangS.HuP.GuoL.2024Outlier-robust extended Kalman filtering for bioinspired integrated navigation systemIEEE Transactions on Automation Science and Engineering21458815894https://doi.org/10.1109/TASE.2023.3319508.Search in Google Scholar
Xu, H., Zhang, Y., Zhou, B., Wang, L., Yao, X., Meng, G., Shen, S. (2022). Omni-swarm: A decentralized omnidirectional visual–inertial–UWB state estimation system for aerial swarms. IEEE Transactions on Robotics, 38 (6), 3374–3394. https://doi.org/10.1109/TRO.2022.3182503.XuH.ZhangY.ZhouB.WangL.YaoX.MengG.ShenS.2022Omni-swarm: A decentralized omnidirectional visual–inertial–UWB state estimation system for aerial swarmsIEEE Transactions on Robotics38633743394https://doi.org/10.1109/TRO.2022.3182503.Search in Google Scholar
Ziegler, T., Karrer, M., Schmuck, P., Chli, M. (2021). Distributed formation estimation via pairwise distance measurements. IEEE Robotics and Automation Letters, 6 (2), 3017–3024. https://doi.org/10.1109/LRA.2021.3062347.ZieglerT.KarrerM.SchmuckP.ChliM.2021Distributed formation estimation via pairwise distance measurementsIEEE Robotics and Automation Letters6230173024https://doi.org/10.1109/LRA.2021.3062347.Search in Google Scholar
Horyna, J., Baca, T., Walter, V., Albani, D., Hert, D., Ferrante, E., Saska, M. (2023). Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication. Autonomous Robots, 47 (1), 77–93. https://doi.org/10.1007/s10514-022-10066-5.HorynaJ.BacaT.WalterV.AlbaniD.HertD.FerranteE.SaskaM.2023Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communicationAutonomous Robots4717793https://doi.org/10.1007/s10514-022-10066-5.Search in Google Scholar
Yang, P., Ye, G.-Y., Shao, C.-L., Yang, S.-L., Huang, Z.-X. (2024). A distributed factor graph model solving method for cooperative localization of UAV swarms. Measurement Science and Technology, 36 (1), 016326. https://doi.org/10.1088/1361-6501/ad91d6.YangP.YeG.-Y.ShaoC.-L.YangS.-L.HuangZ.-X.2024A distributed factor graph model solving method for cooperative localization of UAV swarmsMeasurement Science and Technology361016326https://doi.org/10.1088/1361-6501/ad91d6.Search in Google Scholar
Cano, J., Pages, G., Chaumette, E., Le Ny, J. (2022). Optimal localizability criterion for positioning with distance-deteriorated relative measurements. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 947–953. https://doi.org/10.1109/IROS47612.2022.9981718.CanoJ.PagesG.ChaumetteE.Le NyJ.2022Optimal localizability criterion for positioning with distance-deteriorated relative measurementsIn2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)IEEE947953https://doi.org/10.1109/IROS47612.2022.9981718.Search in Google Scholar
Rui, Y., Zhu, C., Chen, J., Zhou, Z., Pu, Y. (2024). Study on sensor network optimization for MS/AE monitoring system using fisher information and improved encoding framework. IEEE Sensors Journal, 24 (14). https://doi.org/10.1109/JSEN.2024.3383864.RuiY.ZhuC.ChenJ.ZhouZ.PuY.2024Study on sensor network optimization for MS/AE monitoring system using fisher information and improved encoding frameworkIEEE Sensors Journal2414https://doi.org/10.1109/JSEN.2024.3383864.Search in Google Scholar
Kim, S.-H., Cho, C. (2024). Effective independence in optimal sensor placement associated with general fisher information involving full error covariance matrix. Mechanical Systems and Signal Processing, 212, 111263. https://doi.org/10.1016/j.ymssp.2024.111263.KimS.-H.ChoC.2024Effective independence in optimal sensor placement associated with general fisher information involving full error covariance matrixMechanical Systems and Signal Processing212111263https://doi.org/10.1016/j.ymssp.2024.111263.Search in Google Scholar
Ni, H., Zhu, Q., Hua, B., Mao, K., Pan, Y., Ali, F., Zhong, W., Chen, X. (2024). Path loss and shadowing for UAV-to-ground UWB channels incorporating the effects of built-up areas and airframe. IEEE Transactions on Intelligent Transportation Systems, 25 (11), 17066–17077. https://doi.org/10.1109/TITS.2024.3418952.NiH.ZhuQ.HuaB.MaoK.PanY.AliF.ZhongW.ChenX.2024Path loss and shadowing for UAV-to-ground UWB channels incorporating the effects of built-up areas and airframeIEEE Transactions on Intelligent Transportation Systems25111706617077https://doi.org/10.1109/TITS.2024.3418952.Search in Google Scholar
Zhang, K., Chen, P., Ma, T., Gao, S. (2022). On-demand precise tracking for energy-constrained UAVs in underground coal mines. IEEE Transactions on Instrumentation and Measurement, 71, 5500814. https://doi.org/10.1109/TIM.2022.3146925.ZhangK.ChenP.MaT.GaoS.2022On-demand precise tracking for energy-constrained UAVs in underground coal minesIEEE Transactions on Instrumentation and Measurement715500814https://doi.org/10.1109/TIM.2022.3146925.Search in Google Scholar
Xiong, C., Lu, W., Xiong, H., Ding, H., He, Q., Zhao, D., Wan, J., Xing, F., You, Z. (2024). Onboard cooperative relative positioning system for Micro-UAV swarm based on UWB/Vision/INS fusion through distributed graph optimization. Measurement, 234, 114897. https://doi.org/10.1016/j.measurement.2024.114897.XiongC.LuW.XiongH.DingH.HeQ.ZhaoD.WanJ.XingF.YouZ.2024Onboard cooperative relative positioning system for Micro-UAV swarm based on UWB/Vision/INS fusion through distributed graph optimizationMeasurement234114897https://doi.org/10.1016/j.measurement.2024.114897.Search in Google Scholar