Accès libre

Metric Stability of One Month Handgrip Maximal and Explosive Isometric Strength Measured by Classic and Impulse Contractions

, , , , ,  et   
30 oct. 2024
À propos de cet article

Citez
Télécharger la couverture

Tyldesley, B., Grieve, J. (2002). Muscles, Nerves and Movement: In Human Occupation. John Wiley & Sons, ISBN 978-0632059737. Search in Google Scholar

Jaric, S., Radosavljevic-Jaric, S., Johansson, H. (2002). Muscle force and muscle torque in humans require different methods when adjusting for differences in body size. European Journal of Applied Physiology, 87, 304-307. https://doi.org/10.1007/s00421-002-0638-9 Search in Google Scholar

Kudrna, P., Tejkl, L., Rožánek, M. (2017). Electronic hand grip dynamometer. In 2017 E-Health and Bioengineering Conference (EHB). IEEE, 249-252. http://dx.doi.org/10.1109/EHB.2017.7995408 Search in Google Scholar

Bohannon, R. W. (2015). Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Current Opinion in Clinical Nutrition & Metabolic Care, 18 (5), 465-470. https://doi.org/10.1097/mco.0000000000000202 Search in Google Scholar

Bohannon, R. W. (2001). Dynamometer measurements of hand-grip strength predict multiple outcomes. Perceptual and Motor Skills, 93 (2), 323-328. https://doi.org/10.2466/pms.2001.93.2.323 Search in Google Scholar

Innes, E. (1999). Handgrip strength testing: A review of the literature. Australian Occupational Therapy Journal, 46 (3), 120-140. https://doi.org/10.1046/j.1440-1630.1999.00182.x Search in Google Scholar

Dopsaj, M., Nenasheva, A. V., Tretiakova, T. N., Syromiatnikova, Yu. A., Surina-Marysheva, E. F., Marković, S., Dopsaj, V. (2019). Handgrip muscle force characteristics with general reference values at Chelyabinsk and Belgrade students. Human. Sport. Medicine., 19 (2), 27-36. http://dx.doi.org/10.14529/hsm190204 Search in Google Scholar

Buckthorpe, M. W., Hannah, R., Pain, T. G., Folland, J. P. (2012). Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle & Nerve, 46 (4), 566-76. https://doi.org/10.1002/mus.23322 Search in Google Scholar

Enoka, R. M. (1994). Neuromechanical Basis of Kinesiology. Champaign, IL: Human Kinetics, 281-289. ISBN 978-0873226653. Search in Google Scholar

Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology, 93 (4), 1318-1326. https://doi.org/10.1152/japplphysiol.00283.2002 Search in Google Scholar

Thomis, M. A., Van Leemputte, M., Maes, H. H., Blimkie, C. J., Claessens, A. L., Marchal, G., Willems, E., Vlietinck, R. F., Beunen, G. P. (1997). Multivariate genetic analysis of maximal isometric muscle force at different elbow angles. Journal of Applied Physiology, 82 (3), 959-967. https://doi.org/10.1152/jappl.1997.82.3.959 Search in Google Scholar

Dopsaj, M., Valdevit, Z., Vučković, G., Ivanović, J., Bon, M. (2019). A model of the characteristics of hand grip muscle force based on elite female handball players of various ages. Kinesiologia Slovenica, 25 (1), 14-26. https://doi.org/10.52165/kinsi.25.1.14-26 Search in Google Scholar

Milman, R., Zikrin, E., Shacham, D., Freud, T., Press, Y. (2022). Handgrip strength as a predictor of successful rehabilitation after hip fracture in patients 65 years of age and above. Clinical Interventions in Aging, 17,1307-1317. https://doi.org/10.2147/CIA.S374366 Search in Google Scholar

Flood, A., Chung, A., Parker, H., Kearns, V., O’Sullivan, T. A. (2014). The use of hand grip strength as a predictor of nutrition status in hospital patients. Clinical Nutrition, 33 (1), 106-114. https://doi.org/10.1016/j.clnu.2013.03.003 Search in Google Scholar

Matheson, L. N. (1988). How do you know that he tried his best? The Reliability crisis in industrial rehabilitation. Industrial Rehabilitation Quarterly, 1 (1), 11-12. https://phed3806.tripod.com/sitebuildercontent/sitebuilderfiles/mveart.pdf Search in Google Scholar

Fess, E. E. (1986). The need for reliability and validity in hand assessment instruments. The Journal of Hand Surgery, 11 (5), 621-623. https://doi.org/10.1016/s0363-5023(86)80001-6 Search in Google Scholar

Dopsaj, M., Klisarić, D., Kapeleti, M., Ubović, M., Rebić, N., Piper, D., Trikoš, B., Stančić, D., Samardžić, N., Rajkovac, A., Nikolić, D., Nikolić, M., Vasiljević, M., Božović, B. (2022). Reliability and differences between the classic and the impulse model of isometric testing in function of maximal and explosive strength: Pilot research. Physical Culture, 76 (1), 37-46. https://doi.org/10.5937/fizkul76-39013 Search in Google Scholar

Dopsaj, M., Andraos, Z., Richa, C., Mitri, A., Makdissi, E., Zoghbi, A., Dandachi, R., Erlikh, V., Cherepov, E., Masiulis, N., Nenasheva, A., Zuoziene, I., Marković, S., Fayyad, F. (2022). Maximal and explosive strength normative data for handgrip test according to gender: International standardization approach. Human Movement, 23 (4), 77-87. https://doi.org/10.5114/hm.2022.108314 Search in Google Scholar

Dopsaj, M., Valdevit, Z., Bojić, I., Ćopić, N. (2020). Mechanical and functional characteristics of hand grip strength in young female handball players. Facta Universitatis, Series: Physical Education and Sport, 18 (1), 013-023. https://doi.org/10.22190/FUPES200226003D Search in Google Scholar

Marković, S., Dopsaj, M., Veljković, V. (2020). Reliability of sports medical solutions handgrip and Jamar handgrip dynamometer. Measurement Science Review, 20 (2), 59-64. http://dx.doi.org/10.2478/msr-2020-0008 Search in Google Scholar

Nolan, H., O’Connor, J. D., Donoghue, O. A., Savva, G. M., O’Leary, N., Kenny, R.-A. (2020). Factors affecting reliability of grip strength measurements in middle-aged and older adults. HRB Open Research, 3, 32. http://dx.doi.org/10.12688/hrbopenres.13064.1 Search in Google Scholar

Tveter, A. T., Dagfinrud, H., Moseng, T., Holm, I. (2014). Measuring health-related physical fitness in physiotherapy practice: Reliability, validity, and feasibility of clinical field tests and a patient-reported measure. Journal of Orthopaedic & Sports Physical Therapy, 44 (3), 206-216. https://www.jospt.org/doi/10.2519/jospt.2014.5042 Search in Google Scholar

Wright, A. A., Cook, C. E., Baxter, G. D., Dockerty, J. D., Abbott, J. H. (2011). A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. The Journal of Orthopedic and Sports Physical Therapy, 41 (5), 319-327. https://doi.org/10.2519/jospt.2011.3515 Search in Google Scholar

Pimentel-Gomes, F. (2023). Curso de Estatística Experimental. FEALQ, ISBN 978-65-89722-19-9. Search in Google Scholar

Vincent, W. J. (1994). Statistics in Kinesiology. Champaign, IL: Human Kinetics, 178-181. ISBN 978-0873226998. Search in Google Scholar

Mehta, S., Bastero‐Caballero, R. F., Sun, Y., Zhu, R., Murphy, D. K., Hardas, B., Koch, G. (2018). Performance of intraclass correlation coefficient (ICC) as a reliability index under various distributions in scale reliability studies. Statistics in Medicine, 37 (18), 2734-2752. https://doi.org/10.1002/sim.7679 Search in Google Scholar

Bohannon, R. W., Schaubert, K. L. (2005). Test-retest reliability of grip-strength measures obtained over a 12-week interval from community-dwelling elders. Journal of Hand Therapy, 18 (4), 426-428. https://doi.org/10.1197/j.jht.2005.07.003 Search in Google Scholar

Aagaard, P. (2003). Training-induced changes in neural function. Exercise and Sport Sciences Reviews, 31 (2), 61-67. http://dx.doi.org/10.1097/00003677-200304000-00002 Search in Google Scholar