This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Tyldesley, B., Grieve, J. (2002). Muscles, Nerves and Movement: In Human Occupation. John Wiley & Sons, ISBN 978-0632059737.Search in Google Scholar
Jaric, S., Radosavljevic-Jaric, S., Johansson, H. (2002). Muscle force and muscle torque in humans require different methods when adjusting for differences in body size. European Journal of Applied Physiology, 87, 304-307. https://doi.org/10.1007/s00421-002-0638-9Search in Google Scholar
Kudrna, P., Tejkl, L., Rožánek, M. (2017). Electronic hand grip dynamometer. In 2017 E-Health and Bioengineering Conference (EHB). IEEE, 249-252. http://dx.doi.org/10.1109/EHB.2017.7995408Search in Google Scholar
Bohannon, R. W. (2015). Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Current Opinion in Clinical Nutrition & Metabolic Care, 18 (5), 465-470. https://doi.org/10.1097/mco.0000000000000202Search in Google Scholar
Bohannon, R. W. (2001). Dynamometer measurements of hand-grip strength predict multiple outcomes. Perceptual and Motor Skills, 93 (2), 323-328. https://doi.org/10.2466/pms.2001.93.2.323Search in Google Scholar
Innes, E. (1999). Handgrip strength testing: A review of the literature. Australian Occupational Therapy Journal, 46 (3), 120-140. https://doi.org/10.1046/j.1440-1630.1999.00182.xSearch in Google Scholar
Dopsaj, M., Nenasheva, A. V., Tretiakova, T. N., Syromiatnikova, Yu. A., Surina-Marysheva, E. F., Marković, S., Dopsaj, V. (2019). Handgrip muscle force characteristics with general reference values at Chelyabinsk and Belgrade students. Human. Sport. Medicine., 19 (2), 27-36. http://dx.doi.org/10.14529/hsm190204Search in Google Scholar
Buckthorpe, M. W., Hannah, R., Pain, T. G., Folland, J. P. (2012). Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle & Nerve, 46 (4), 566-76. https://doi.org/10.1002/mus.23322Search in Google Scholar
Enoka, R. M. (1994). Neuromechanical Basis of Kinesiology. Champaign, IL: Human Kinetics, 281-289. ISBN 978-0873226653.Search in Google Scholar
Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology, 93 (4), 1318-1326. https://doi.org/10.1152/japplphysiol.00283.2002Search in Google Scholar
Thomis, M. A., Van Leemputte, M., Maes, H. H., Blimkie, C. J., Claessens, A. L., Marchal, G., Willems, E., Vlietinck, R. F., Beunen, G. P. (1997). Multivariate genetic analysis of maximal isometric muscle force at different elbow angles. Journal of Applied Physiology, 82 (3), 959-967. https://doi.org/10.1152/jappl.1997.82.3.959Search in Google Scholar
Dopsaj, M., Valdevit, Z., Vučković, G., Ivanović, J., Bon, M. (2019). A model of the characteristics of hand grip muscle force based on elite female handball players of various ages. Kinesiologia Slovenica, 25 (1), 14-26. https://doi.org/10.52165/kinsi.25.1.14-26Search in Google Scholar
Milman, R., Zikrin, E., Shacham, D., Freud, T., Press, Y. (2022). Handgrip strength as a predictor of successful rehabilitation after hip fracture in patients 65 years of age and above. Clinical Interventions in Aging, 17,1307-1317. https://doi.org/10.2147/CIA.S374366Search in Google Scholar
Flood, A., Chung, A., Parker, H., Kearns, V., O’Sullivan, T. A. (2014). The use of hand grip strength as a predictor of nutrition status in hospital patients. Clinical Nutrition, 33 (1), 106-114. https://doi.org/10.1016/j.clnu.2013.03.003Search in Google Scholar
Matheson, L. N. (1988). How do you know that he tried his best? The Reliability crisis in industrial rehabilitation. Industrial Rehabilitation Quarterly, 1 (1), 11-12. https://phed3806.tripod.com/sitebuildercontent/sitebuilderfiles/mveart.pdfSearch in Google Scholar
Fess, E. E. (1986). The need for reliability and validity in hand assessment instruments. The Journal of Hand Surgery, 11 (5), 621-623. https://doi.org/10.1016/s0363-5023(86)80001-6Search in Google Scholar
Dopsaj, M., Klisarić, D., Kapeleti, M., Ubović, M., Rebić, N., Piper, D., Trikoš, B., Stančić, D., Samardžić, N., Rajkovac, A., Nikolić, D., Nikolić, M., Vasiljević, M., Božović, B. (2022). Reliability and differences between the classic and the impulse model of isometric testing in function of maximal and explosive strength: Pilot research. Physical Culture, 76 (1), 37-46. https://doi.org/10.5937/fizkul76-39013Search in Google Scholar
Dopsaj, M., Andraos, Z., Richa, C., Mitri, A., Makdissi, E., Zoghbi, A., Dandachi, R., Erlikh, V., Cherepov, E., Masiulis, N., Nenasheva, A., Zuoziene, I., Marković, S., Fayyad, F. (2022). Maximal and explosive strength normative data for handgrip test according to gender: International standardization approach. Human Movement, 23 (4), 77-87. https://doi.org/10.5114/hm.2022.108314Search in Google Scholar
Dopsaj, M., Valdevit, Z., Bojić, I., Ćopić, N. (2020). Mechanical and functional characteristics of hand grip strength in young female handball players. Facta Universitatis, Series: Physical Education and Sport, 18 (1), 013-023. https://doi.org/10.22190/FUPES200226003DSearch in Google Scholar
Marković, S., Dopsaj, M., Veljković, V. (2020). Reliability of sports medical solutions handgrip and Jamar handgrip dynamometer. Measurement Science Review, 20 (2), 59-64. http://dx.doi.org/10.2478/msr-2020-0008Search in Google Scholar
Nolan, H., O’Connor, J. D., Donoghue, O. A., Savva, G. M., O’Leary, N., Kenny, R.-A. (2020). Factors affecting reliability of grip strength measurements in middle-aged and older adults. HRB Open Research, 3, 32. http://dx.doi.org/10.12688/hrbopenres.13064.1Search in Google Scholar
Tveter, A. T., Dagfinrud, H., Moseng, T., Holm, I. (2014). Measuring health-related physical fitness in physiotherapy practice: Reliability, validity, and feasibility of clinical field tests and a patient-reported measure. Journal of Orthopaedic & Sports Physical Therapy, 44 (3), 206-216. https://www.jospt.org/doi/10.2519/jospt.2014.5042Search in Google Scholar
Wright, A. A., Cook, C. E., Baxter, G. D., Dockerty, J. D., Abbott, J. H. (2011). A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. The Journal of Orthopedic and Sports Physical Therapy, 41 (5), 319-327. https://doi.org/10.2519/jospt.2011.3515Search in Google Scholar
Pimentel-Gomes, F. (2023). Curso de Estatística Experimental. FEALQ, ISBN 978-65-89722-19-9.Search in Google Scholar
Vincent, W. J. (1994). Statistics in Kinesiology. Champaign, IL: Human Kinetics, 178-181. ISBN 978-0873226998.Search in Google Scholar
Mehta, S., Bastero‐Caballero, R. F., Sun, Y., Zhu, R., Murphy, D. K., Hardas, B., Koch, G. (2018). Performance of intraclass correlation coefficient (ICC) as a reliability index under various distributions in scale reliability studies. Statistics in Medicine, 37 (18), 2734-2752. https://doi.org/10.1002/sim.7679Search in Google Scholar
Bohannon, R. W., Schaubert, K. L. (2005). Test-retest reliability of grip-strength measures obtained over a 12-week interval from community-dwelling elders. Journal of Hand Therapy, 18 (4), 426-428. https://doi.org/10.1197/j.jht.2005.07.003Search in Google Scholar
Aagaard, P. (2003). Training-induced changes in neural function. Exercise and Sport Sciences Reviews, 31 (2), 61-67. http://dx.doi.org/10.1097/00003677-200304000-00002Search in Google Scholar