1. bookVolume 22 (2022): Edition 6 (December 2022)
Détails du magazine
License
Format
Magazine
eISSN
1335-8871
Première parution
07 Mar 2008
Périodicité
6 fois par an
Langues
Anglais
Accès libre

The Importance of ECG Offset Correction for Premature Ventricular Contraction Origin Localization from Clinical Data

Publié en ligne: 13 Oct 2022
Volume & Edition: Volume 22 (2022) - Edition 6 (December 2022)
Pages: 202 - 208
Reçu: 23 Jan 2022
Accepté: 30 May 2022
Détails du magazine
License
Format
Magazine
eISSN
1335-8871
Première parution
07 Mar 2008
Périodicité
6 fois par an
Langues
Anglais

[1] Cluitmans, M.J.M., Peeters, R.L.M., Westra, R.L., Volders, P.G.A. (2015). Noninvasive reconstruction of cardiac electrical activity: Update on current methods, applications and challenges. Netherlands Heart Journal, 23 (6), 301–311. https://doi.org/10.1007/s12471-015-0690-9444628225896779 Search in Google Scholar

[2] Zhou, S., Sapp, J.L., AbdelWahab, A., Šťovíček, P., Horáček, B.M. (2018). Localization of ventricular activation origin using patient -specific geometry: Preliminary results. Journal of Cardiovascular Electrophysiology, 29 (7), 979–986. https://doi.org/10.1111/jce.1362229702740 Search in Google Scholar

[3] Van Dam, P.M., Tung, R., Shivkumar, K., Laks, M. (2013). Quantitative localization of premature ventricular contractions using myocardial activation ECGI from the standard 12-lead electrocardiogram. Journal of Electrocardiology, 46 (6), 574–579. https://doi.org/10.1016/j.jelectrocard.2013.08.00524028996 Search in Google Scholar

[4] Guillem, M.S., Climent, A.M., Rodrigo, M., Hernandez-Romero, I., Liberos, A., Fernandez-Aviles, F., Berenfeld, O., Atienza, F. (2016). Noninvasive identification of atrial fibrillation drivers: Simulation and patient data evaluation. Computing in Cardiology, 43, 121–124. http://dx.doi.org/10.22489/CinC.2016.039-42010.22489/CinC.2016.039-420 Search in Google Scholar

[5] Zemzemi, N., Dobrzynski, C., Bear, L.R., Potse, M., Dallet, C., Coudiere, Y., Dubois, R., Duchateau, J. (2015). Effect of the torso conductivity heterogeneities on the ECGI inverse problem solution. Computing in Cardiology, 42, 233–236. http://dx.doi.org/10.1109/cic.2015.740862910.1109/CIC.2015.7408629 Search in Google Scholar

[6] Punshchykova, O., Švehlíková, J., Tyšler, M., Grünes, R., Sedova, K., Osmančík, P., Žďárská, J., Heřman, D., Knepp, P. (2016). Influence of torso model complexity on the noninvasive localization of ectopic ventricular activity. Measurement Science Review, 16 (2), 96–102. https://doi.org/10.1515/msr-2016-0013 Search in Google Scholar

[7] Zhou, S., Sapp, J.L., Dawoud, F., Horacek, B.M. (2019). Localization of activation origin on patient-specific epicardial surface by empirical Bayesian method. IEEE Transactions on Biomedical Engineering, 66 (5), 1380–1389. https://doi.org/10.1109/tbme.2018.287298330281434 Search in Google Scholar

[8] Onak, O.N., Serinagaoglu Dogrusoz, Y., Weber, G.W. (2018). Effects of a priori parameter selection in minimum relative entropy method on inverse electrocardiography problem. Inverse Problems in Science and Engineering, 26 (6), 877–897. https://doi.org/10.1080/17415977.2017.1369979 Search in Google Scholar

[9] Serinagaoglu Dogrusoz, Y. (2019). Statistical estimation applied to electrocardiographic imaging. In 2019 12th International Conference on Measurement. IEEE, 2-9.https://doi.org/10.23919/MEASUREMENT47340.2019.8779856 Search in Google Scholar

[10] Schuler, S., Schaufelberger, M., Bear, L.R., Bergquist, J.A., Cluitmans, M.J.M., Coll-Font, J., Onak, O.N., Zenger, B., Loewe, A., MacLeod, R.S., Brooks, D.H., Doessel, O. (2022). Reducing line-of-block artifacts in cardiac activation maps estimated using ECG imaging: A comparison of source models and estimation methods. IEEE Transactions on Biomedical Engineering, 69 (6), 2041-2052. http://dx.doi.org/10.1109/TBME.2021.313515410.1109/TBME.2021.3135154 Search in Google Scholar

[11] Zhang, Y., Ghodrati, A., Brooks, D.H. (2005). An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework. Inverse Problems, 21 (1), 357–382. http://dx.doi.org/10.1088/0266-5611/21/1/02210.1088/0266-5611/21/1/022 Search in Google Scholar

[12] Tuboly, G., Kozmann, G., Maros, I. (2015). Computational aspects of electrocardiological inverse solutions. IFAC-PapersOnLine, 48 (20), 48–51. https://doi.org/10.1016/j.ifacol.2015.10.113 Search in Google Scholar

[13] Tysler, M., Svehlikova, J. (2013). Noninvasive finding of local repolarization changes in the heart using dipole models and simplified torso geometry. Journal of Electrocardiology, 46 (4), 284–288. https://doi.org/10.1016/j.jelectrocard.2013.03.01423628317 Search in Google Scholar

[14] Svehlikova, J., Teplan, M., Tysler, M. (2015). Noninvasive identification of two lesions with local repolarization changes using two dipoles in inverse solution simulation study. Computers in Biology and Medicine, 57, 96–102. https://doi.org/10.1016/j.compbiomed.2014.11.02025546467 Search in Google Scholar

[15] Svehlikova, J., Teplan, M., Tysler, M. (2018). Geometrical constraint of sources in noninvasive localization of premature ventricular contractions. Journal of Electrocardiology, 51 (3), 370-377. https://doi.org/10.1016/j.jelectrocard.2018.02.01329779525 Search in Google Scholar

[16] Svehlikova, J., Zelinka, J., Dogrusoz, Y.S., Good, W., Tysler, M., Bear, L. (2018). Impact of signal preprocessing on the inverse localization of the origin of ventricular pacing. Computing in Cardiology, 45, 3–6. https://doi.org/10.22489/CinC.2018.315 Search in Google Scholar

[17] Tan, N., Bear, L., Potse, M., Puyo, S., Meo, M., Dubois, R. (2019). Analysis of signal -averaged electrocardiogram performance for body surface recordings. Computing in Cardiology, 45, 3–6. https://doi.org/10.23919/CinC49843.2019.9005816 Search in Google Scholar

[18] Bear, L.R., Dogrusoz, Y.S., Good, W., Svehlikova, J., Coll-Font, J., Van Dam, E., MacLeod, R. (2021). The impact of torso signal processing on noninvasive electrocardiographic imaging reconstructions. IEEE Transactions on Biomedical Engineering, 68 (2), 436–447. https://doi.org/10.1109/TBME.2020.3003465800015832746032 Search in Google Scholar

[19] Kadanec, J. Zelinka, J. Bukor, G. Tysler, M. (2017). ProCardio 8 - System for high-resolution ECG mapping. In 2017 11th International Conference on Measurement. IEEE, 263–266. https://doi.org/10.23919/MEASUREMENT.2017.7983586 Search in Google Scholar

[20] TatraMed Software. https://tatramed.sk/tomocon-workstation/ Search in Google Scholar

[21] Harris, F.J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66 (1), 51–83. https://doi.org/10.1109/PROC.1978.10837 Search in Google Scholar

[22] Pan, J., Tompkins, W.J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32 (3), 230–236. https://doi.org/10.1109/TBME.1985.3255323997178 Search in Google Scholar

[23] Bishop, C.M. (2006). K-means clustering. In Pattern Recognition and Machine Learning. Springer, 424–430. ISBN 978-0387310732. Search in Google Scholar

[24] Oostendorp, T., Van Oosterom, A. (1989). Source parameter estimation in inhomogeneous volume conductors of arbitrary shape. IEEE Transactions on Biomedical Engineering, 36 (3), 382–391. https://doi.org/10.1109/10.198592921073 Search in Google Scholar

[25] Bae, T.W., Kwon, K.K. (2021). ECG PQRST complex detector and heart rate variability analysis using temporal characteristics of fiducial points. Biomedical Signal Processing and Control, 66, 102291. https://doi.org/10.1016/j.bspc.2020.102291 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo