Accès libre

Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co-Cr coatings

À propos de cet article

Citez

Dwivedi DK. Surface engineering: Enhancing life of tribological components. Springer; 2018. DwivediDK Surface engineering: Enhancing life of tribological components Springer 2018 10.1007/978-81-322-3779-2 Search in Google Scholar

Heimann RB. Plasma-spray coating: Principles and applications. 2nd ed. John Wiley & Sons; 2008. HeimannRB Plasma-spray coating: Principles and applications 2nd ed. John Wiley & Sons 2008 Search in Google Scholar

Pawłowski L. The science and engineering of thermal spray coatings. 2nd ed. John Wiley & Sons; 2008 PawłowskiL The science and engineering of thermal spray coatings 2nd ed. John Wiley & Sons 2008 10.1002/9780470754085 Search in Google Scholar

Donadei V, Koivoluoto H, Sarlin E, Vuoristo P. Lubricated icephobic coatings prepared by flame spraying with hybrid feedstock injection. Surf Coat Tech. 2020;403:126396. https://doi.org/10.1016/j.surfcoat.2020.126396. DonadeiV KoivoluotoH SarlinE VuoristoP Lubricated icephobic coatings prepared by flame spraying with hybrid feedstock injection Surf Coat Tech 2020 403 126396. https://doi.org/10.1016/j.surfcoat.2020.126396. 10.1016/j.surfcoat.2020.126396 Search in Google Scholar

Czupryński A. Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies. Materials. 2019;12:3467. https://doi.org/10.3390/ma12213467. CzupryńskiA Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies Materials 2019 12 3467 https://doi.org/10.3390/ma12213467. 10.3390/ma12213467686193731652697 Search in Google Scholar

Devaraj S, McDonald A, Chandra S. Metallization of porous polyethylene using a wire-arc spray process for heat transfer applications. J Therm Spray Techn. 2021;30:145–56. https://doi.org/10.1007/s11666-020-01119-1. DevarajS McDonaldA ChandraS Metallization of porous polyethylene using a wire-arc spray process for heat transfer applications J Therm Spray Techn 2021 30 145 56 https://doi.org/10.1007/s11666-020-01119-1. 10.1007/s11666-020-01119-1 Search in Google Scholar

Chmielewski T, Siwek P, Chmielewski M, Piątkowska A, Grabias A, Golański D. Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases. Metals. 2018;8:1059. https://doi.org/10.3390/met8121059. ChmielewskiT SiwekP ChmielewskiM PiątkowskaA GrabiasA GolańskiD Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases Metals 2018 8 1059 https://doi.org/10.3390/met8121059. 10.3390/met8121059 Search in Google Scholar

de la Roche J, Alvarado-Orozco JM, Gomez PA, Cano IG, Dosta S, Toro A. Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4 + V2O5 molten salts. Surf Coat Tech. 2022;432:128066. https://doi.org/10.1016/j.surfcoat.2021.128066. de la RocheJ Alvarado-OrozcoJM GomezPA CanoIG DostaS ToroA Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4 + V2O5 molten salts Surf Coat Tech 2022 432 128066. https://doi.org/10.1016/j.surfcoat.2021.128066. 10.1016/j.surfcoat.2021.128066 Search in Google Scholar

Łatka L, Michalak M, Szala M, Walczak M, Sokołowski P, Ambroziak A. Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surf Coat Tech. 2021;410:126979. https://doi.org/10.1016/j.surfcoat.2021.126979. ŁatkaL MichalakM SzalaM WalczakM SokołowskiP AmbroziakA Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings Surf Coat Tech 2021 410 126979. https://doi.org/10.1016/j.surfcoat.2021.126979. 10.1016/j.surfcoat.2021.126979 Search in Google Scholar

Huang C, Arseenko M, Zhao L, Xie Y, Elsenberg A, Li W, et al. Property prediction and crack growth behavior in cold sprayed Cu deposits. Mater Design. 2021;206:109826. https://doi.org/10.1016/j.matdes.2021.109826. HuangC ArseenkoM ZhaoL XieY ElsenbergA LiW Property prediction and crack growth behavior in cold sprayed Cu deposits Mater Design 2021 206 109826. https://doi.org/10.1016/j.matdes.2021.109826. 10.1016/j.matdes.2021.109826 Search in Google Scholar

Winnicki M, Gibas A, Baszczuk A, Jasiorski M. Low pressure cold spraying of TiO2 on acrylonitrile butadiene styrene (ABS). Surf Coat Tech. 2021;406:126717. https://doi.org/10.1016/j.surfcoat.2020.126717. WinnickiM GibasA BaszczukA JasiorskiM Low pressure cold spraying of TiO2 on acrylonitrile butadiene styrene (ABS) Surf Coat Tech 2021 406 126717. https://doi.org/10.1016/j.surfcoat.2020.126717. 10.1016/j.surfcoat.2020.126717 Search in Google Scholar

Singh V, Singh I, Bansal A, Omer A, Singla AK, Rampal A, Goyal DK. Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC + CuNi-Cr) based novel coatings on SS316 steel. Surf Coat Tech. 2022;432:128052. https://doi.org/10.1016/j.surfcoat.2021.128052. SinghV SinghI BansalA OmerA SinglaAK RampalA GoyalDK Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC + CuNi-Cr) based novel coatings on SS316 steel Surf Coat Tech 2022 432 128052 https://doi.org/10.1016/j.surfcoat.2021.128052. 10.1016/j.surfcoat.2021.128052 Search in Google Scholar

Praveen AS, Arjunan A. High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC–Co coatings. Appl Sur Sci Adv. 2022;7:100191. https://doi.org/10.1016/j.apsadv.2021.100191. PraveenAS ArjunanA High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC–Co coatings Appl Sur Sci Adv 2022 7 100191. https://doi.org/10.1016/j.apsadv.2021.100191. 10.1016/j.apsadv.2021.100191 Search in Google Scholar

Fauchais PL, Heberlein JVR, Boulos MI. Thermal spray fundamentals, from powder to part. Springer; 2014. FauchaisPL HeberleinJVR BoulosMI Thermal spray fundamentals, from powder to part Springer 2014 10.1007/978-0-387-68991-3 Search in Google Scholar

Lima RS, Marple BR. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A review. J Therm Spray Techn. 2007;16:40–63. https://doi.org/10.1007/s11666-006-9010-7. LimaRS MarpleBR Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A review J Therm Spray Techn 2007 16 40 63 https://doi.org/10.1007/s11666-006-9010-7. 10.1007/s11666-006-9010-7 Search in Google Scholar

Picas JA, Forn A, Matthaus G. HVOF coatings as an alternative to hard chrome for pistons and valves. Wear. 2006;261:477–84. https://doi.org/10.1016/j.wear.2005.12.005. PicasJA FornA MatthausG HVOF coatings as an alternative to hard chrome for pistons and valves Wear 2006 261 477 84 https://doi.org/10.1016/j.wear.2005.12.005. 10.1016/j.wear.2005.12.005 Search in Google Scholar

Kiilakoski J, Langlade C, Koivuluoto H, Vuoristo P. Characterizing the micro-impact fatigue behavior of APS and HVOF sprayed ceramic coatings. Surf Coat Tech. 2019;371:245–54. https://doi.org/10.1016/j.surfcoat.2018.10.097. KiilakoskiJ LangladeC KoivuluotoH VuoristoP Characterizing the micro-impact fatigue behavior of APS and HVOF sprayed ceramic coatings Surf Coat Tech 2019 371 245 54 https://doi.org/10.1016/j.surfcoat.2018.10.097. 10.1016/j.surfcoat.2018.10.097 Search in Google Scholar

Mousavi SE, Naghshehkesh N, Amirnejad M, Shammakhi H, Sonboli A. Wear and corrosion properties of stellite-6 coating fabricated by HVOF on nickel–aluminium bronze substrate. Met Mater Int. 2020;27:3269–81. https://doi.org/10.1007/s12540-020-00697-7. MousaviSE NaghshehkeshN AmirnejadM ShammakhiH SonboliA Wear and corrosion properties of stellite-6 coating fabricated by HVOF on nickel–aluminium bronze substrate Met Mater Int 2020 27 3269 81 https://doi.org/10.1007/s12540-020-00697-7. 10.1007/s12540-020-00697-7 Search in Google Scholar

Qiao L, Wu Y, Hong S, Long W, Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram Int. 2021;47:1829–36. https://doi.org/10.1016/j.ceramint.2020.09.009. QiaoL WuY HongS LongW ChengJ Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying Ceram Int 2021 47 1829 36 https://doi.org/10.1016/j.ceramint.2020.09.009. 10.1016/j.ceramint.2020.09.009 Search in Google Scholar

Jackson L, Ivosevic M, Knight R, Cairncross RA. Sliding wear properties of HVOF thermally sprayed nylon-11 and nylon-11/ceramic composites on steel. J Therm Spray Technol. 2007;16:927–32. https://doi.org/10.1007/s11666-007-9088-6. JacksonL IvosevicM KnightR CairncrossRA Sliding wear properties of HVOF thermally sprayed nylon-11 and nylon-11/ceramic composites on steel J Therm Spray Technol 2007 16 927 32 https://doi.org/10.1007/s11666-007-9088-6. 10.1007/s11666-007-9088-6 Search in Google Scholar

Houdkova S, Zahalka F, Kasparova M, Berger L-M. Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement. Tribol Lett. 2011;43:139–54. https://doi.org/10.1007/s11249-011-9791-9. HoudkovaS ZahalkaF KasparovaM BergerL-M Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement Tribol Lett 2011 43 139 54 https://doi.org/10.1007/s11249-011-9791-9. 10.1007/s11249-011-9791-9 Search in Google Scholar

Krelling AP, de Souza MM, da Costa CE, Giubilei Milan JC. HVOF-sprayed coating over AISI 4140 steel for hard chromium replacement. Mater Res. 2018;21:e20180138. https://doi.org/10.1590/1980-5373-MR-2018-0138. KrellingAP de SouzaMM da CostaCE Giubilei MilanJC HVOF-sprayed coating over AISI 4140 steel for hard chromium replacement Mater Res 2018 21 e20180138 https://doi.org/10.1590/1980-5373-MR-2018-0138. 10.1590/1980-5373-mr-2018-0138 Search in Google Scholar

Berger L-M. Application of hardmetals as thermal spray coatings. Int J Refract Hard Met. 2015;49:350–64. https://doi.org/10.1016/j.ijrmhm.2014.09.029. BergerL-M Application of hardmetals as thermal spray coatings Int J Refract Hard Met 2015 49 350 64 https://doi.org/10.1016/j.ijrmhm.2014.09.029. 10.1016/j.ijrmhm.2014.09.029 Search in Google Scholar

Ma N, Guo L, Cheng Z, Wu H, Ye F, Zhang K. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Appl Surf Sci. 2014;320:364–71. https://doi.org/10.1016/j.apsusc.2014.09.081. MaN GuoL ChengZ WuH YeF ZhangK Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure Appl Surf Sci 2014 320 364 71 https://doi.org/10.1016/j.apsusc.2014.09.081. 10.1016/j.apsusc.2014.09.081 Search in Google Scholar

Chen H, Gou GQ, Tu MJ, Liu Y. Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC-17Co coatings. Surface Eng. 2009;25:502–6. https://doi.org/10.1179/026708408X329489. ChenH GouGQ TuMJ LiuY Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC-17Co coatings Surface Eng 2009 25 502 6 https://doi.org/10.1179/026708408X329489. 10.1179/026708408X329489 Search in Google Scholar

Ward LP, Pilkington A. The dry sliding wear behavior of HVOF-sprayed WC: Metal composite coatings. J Mater Eng Perform. 2014;23:3266–78. https://doi.org/10.1007/s11665-014-1122-5. WardLP PilkingtonA The dry sliding wear behavior of HVOF-sprayed WC: Metal composite coatings J Mater Eng Perform 2014 23 3266 78 https://doi.org/10.1007/s11665-014-1122-5. 10.1007/s11665-014-1122-5 Search in Google Scholar

Murthy JKN, Venkataraman B. Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes. Surf Coat Tech. 2006;200:2642–52. https://doi.org/10.1016/j.surfcoat.2004.10.136. MurthyJKN VenkataramanB Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes Surf Coat Tech 2006 200 2642 52 https://doi.org/10.1016/j.surfcoat.2004.10.136. 10.1016/j.surfcoat.2004.10.136 Search in Google Scholar

Fang W, Cho TY, Yoon JH, Song KO, Hur SK, Youn SJ, et al. Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating. J Mater Process Tech. 2009;209:3561–7. https://doi.org/10.1016/j.jmatprotec.2008.08.024. FangW ChoTY YoonJH SongKO HurSK YounSJ Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating J Mater Process Tech 2009 209 3561 7 https://doi.org/10.1016/j.jmatprotec.2008.08.024. 10.1016/j.jmatprotec.2008.08.024 Search in Google Scholar

Bang SS, Park YC, Lee JW, Hyun SK, Kim TB, Lee JK, et al. Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings. J Nanosci Nanotechnol. 2018;18:1931–4. https://doi.org/10.1166/jnn.2018.14990. BangSS ParkYC LeeJW HyunSK KimTB LeeJK Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings J Nanosci Nanotechnol 2018 18 1931 4 https://doi.org/10.1166/jnn.2018.14990. 10.1166/jnn.2018.1499029448686 Search in Google Scholar

Hong S, Wu Y, Zheng Y, Wang B, Gao W, Li G, et al. Effect of spray parameters on the corrosion behavior of HVOF sprayed WC-Co-Cr coatings. J Mater Eng Perform. 2014;23:1434–9. https://doi.org/10.1007/s11665-014-0865-3. HongS WuY ZhengY WangB GaoW LiG Effect of spray parameters on the corrosion behavior of HVOF sprayed WC-Co-Cr coatings J Mater Eng Perform 2014 23 1434 9 https://doi.org/10.1007/s11665-014-0865-3. 10.1007/s11665-014-0865-3 Search in Google Scholar

Lee L, Kim S. Influence of thermally sprayed WC-Co-Cr coatings on the corrosion characteristics of Ni-Al bronze alloy. Int J Electrochem Sci. 2021;16:210769. https://doi.org/10.20964/2021.07.40. LeeL KimS Influence of thermally sprayed WC-Co-Cr coatings on the corrosion characteristics of Ni-Al bronze alloy Int J Electrochem Sci 2021 16 210769. https://doi.org/10.20964/2021.07.40. 10.20964/2021.07.40 Search in Google Scholar

Gui M, Eybel R, Asselin B, Radhakrishnan S, Cerps J. Influence of processing parameters on residual stress of high velocity oxy-fuel thermally sprayed WC-Co-Cr coating. J Mater Eng Perform. 2012;21:2090–8. https://doi.org/10.1007/s11665-012-0134-2. GuiM EybelR AsselinB RadhakrishnanS CerpsJ Influence of processing parameters on residual stress of high velocity oxy-fuel thermally sprayed WC-Co-Cr coating J Mater Eng Perform 2012 21 2090 8 https://doi.org/10.1007/s11665-012-0134-2. 10.1007/s11665-012-0134-2 Search in Google Scholar

Jonda E, Łatka L. Comparative analysis of mechanical properties of WC-based cermet coatings sprayed by HVOF onto AZ31 magnesium alloy substrates. Adv Sci Technol Res J. 2021;15:57–64. https://doi.org/10.12913/22998624/135979. JondaE ŁatkaL Comparative analysis of mechanical properties of WC-based cermet coatings sprayed by HVOF onto AZ31 magnesium alloy substrates Adv Sci Technol Res J 2021 15 57 64 https://doi.org/10.12913/22998624/135979. 10.12913/22998624/135979 Search in Google Scholar

Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83. https://doi.org/10.1557/JMR.1992.1564. OliverWC PharrGM An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments J Mater Res 1992 7 1564 83 https://doi.org/10.1557/JMR.1992.1564. 10.1557/JMR.1992.1564 Search in Google Scholar

Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A. Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol. 2013;220:131–9. https://doi.org/10.1016/j.surfcoat.2012.07.025. ŁatkaL ChicotD CattiniA PawłowskiL AmbroziakA Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings Surf Coat Technol 2013 220 131 9 https://doi.org/10.1016/j.surfcoat.2012.07.025. 10.1016/j.surfcoat.2012.07.025 Search in Google Scholar

Lancaster JK. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear. 1967;10:103–17. https://doi.org/10.1016/0043-1648(67)90082-8. LancasterJK The influence of substrate hardness on the formation and endurance of molybdenum disulphide films Wear 1967 10 103 17 https://doi.org/10.1016/0043-1648(67)90082-8. 10.1016/0043-1648(67)90082-8 Search in Google Scholar

Aguero A, Camon F, Garcıa de Blas J, del Hoyo JC, Muelas R, Santaballa A, et al. HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators. J Therm Spray Techn. 2011;20:1292–309. https://doi.org/10.1007/s11666-011-9686-1. AgueroA CamonF Garcıa de BlasJ del HoyoJC MuelasR SantaballaA HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators J Therm Spray Techn 2011 20 1292 309 https://doi.org/10.1007/s11666-011-9686-1. 10.1007/s11666-011-9686-1 Search in Google Scholar

Ding X, Ke D, Yuan C, Ding Z, Cheng X. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings. 2018;8:307. https://doi.org/10.3390/coatings8090307. DingX KeD YuanC DingZ ChengX Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC Coatings 2018 8 307 https://doi.org/10.3390/coatings8090307. 10.3390/coatings8090307 Search in Google Scholar

Hong S, Wu Y, Wang B, Lin J. Improvement in tribological properties of Cr12MoV coldWork die steel by HVOF sprayed WC-Co-Cr cermet coatings. Coatings. 2019;9:825. https://doi.org/10.3390/coatings9120825. HongS WuY WangB LinJ Improvement in tribological properties of Cr12MoV coldWork die steel by HVOF sprayed WC-Co-Cr cermet coatings Coatings 2019 9 825 https://doi.org/10.3390/coatings9120825. 10.3390/coatings9120825 Search in Google Scholar

Wang H, Qiu Q, Gee M, Hou C, Liu X, Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Mater Des. 2020;191:108586. https://doi.org/10.1016/j.matdes.2020.108586. WangH QiuQ GeeM HouC LiuX SongX Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder Mater Des 2020 191 108586. https://doi.org/10.1016/j.matdes.2020.108586. 10.1016/j.matdes.2020.108586 Search in Google Scholar

Song B, Murray JW, Wellman RG, Pala Z, Hussain T. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear. 2020;442–443:203114. https://doi.org/10.1016/j.wear.2019.203114. SongB MurrayJW WellmanRG PalaZ HussainT Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings Wear 2020 442–443 203114. https://doi.org/10.1016/j.wear.2019.203114. 10.1016/j.wear.2019.203114 Search in Google Scholar

Zhan S-H, Cho T-Y, Yoon J-H, Li M-X, Shum PW, Kwon S-C. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment. Mater Sci Eng B. 2009;162:127–34. https://doi.org/10.1016/j.mseb.2009.03.017. ZhanS-H ChoT-Y YoonJ-H LiM-X ShumPW KwonS-C Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment Mater Sci Eng B 2009 162 127 34 https://doi.org/10.1016/j.mseb.2009.03.017. 10.1016/j.mseb.2009.03.017 Search in Google Scholar

Yao H-L, Yang C, Yi D-L, Zhang M-X, Wang H-T, Chen Q-Y, et al. Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings. Surf Coat Tech. 2020;397:126010. https://doi.org/10.1016/j.surfcoat.2020.126010. YaoH-L YangC YiD-L ZhangM-X WangH-T ChenQ-Y Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings Surf Coat Tech 2020 397 126010. https://doi.org/10.1016/j.surfcoat.2020.126010. 10.1016/j.surfcoat.2020.126010 Search in Google Scholar

Murugan K, Ragupathy A, Balasubramanian V, Sridhar K. Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings. Surf Coat Tech. 2014;247:90–102. https://doi.org/10.1016/j.surfcoat.2014.03.022. MuruganK RagupathyA BalasubramanianV SridharK Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings Surf Coat Tech 2014 247 90 102 https://doi.org/10.1016/j.surfcoat.2014.03.022. 10.1016/j.surfcoat.2014.03.022 Search in Google Scholar

Myalska H, Lusvarghi L, Bolelli G, Sassatelli P, Moskal G. Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surf Coat Tech. 2019;371:401–16. https://doi.org/10.1016/j.surfcoat.2018.09.017. MyalskaH LusvarghiL BolelliG SassatelliP MoskalG Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition Surf Coat Tech 2019 371 401 16 https://doi.org/10.1016/j.surfcoat.2018.09.017. 10.1016/j.surfcoat.2018.09.017 Search in Google Scholar

Mateen A, Saha GC, Khan TI, Khalid F. Tribological behavior of HVOF sprayed near-nanostructured and microstructured WC-17wt.%Co coatings. Surf Coat Tech. 2011;206:1077–84. https://doi.org/10.1016/j.surfcoat.2011.07.075. MateenA SahaGC KhanTI KhalidF Tribological behavior of HVOF sprayed near-nanostructured and microstructured WC-17wt.%Co coatings Surf Coat Tech 2011 206 1077 84 https://doi.org/10.1016/j.surfcoat.2011.07.075. 10.1016/j.surfcoat.2011.07.075 Search in Google Scholar

Karimi A, Verdon Ch, Barbezat G. Microstructure and hydroabrasive wear behaviour of high velocity oxy-fuel thermally sprayed WC-Co(Cr) coatings. Surf Coat Tech. 1993;57:81–9. https://doi.org/10.1016/0257-8972(93)90340-T. KarimiA VerdonCh BarbezatG Microstructure and hydroabrasive wear behaviour of high velocity oxy-fuel thermally sprayed WC-Co(Cr) coatings Surf Coat Tech 1993 57 81 9 https://doi.org/10.1016/0257-8972(93)90340-T. 10.1016/0257-8972(93)90340-T Search in Google Scholar

Bartuli C, Valente T, Cipri F, Bemporad E, Tului M. Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings. J Therm Spray Techn. 2005;14:187–95. https://doi.org/10.1361/10599630523746. BartuliC ValenteT CipriF BemporadE TuluiM Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings J Therm Spray Techn 2005 14 187 95 https://doi.org/10.1361/10599630523746. 10.1361/10599630523746 Search in Google Scholar

Picas JA, Ruperez E, Punset M, Forn A. Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf Coat Tech. 2013;225:47–57. https://doi.org/10.1016/j.surfcoat.2013.03.015. PicasJA RuperezE PunsetM FornA Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment Surf Coat Tech 2013 225 47 57 https://doi.org/10.1016/j.surfcoat.2013.03.015. 10.1016/j.surfcoat.2013.03.015 Search in Google Scholar

Bolelli G, Berger L-M, Borner T, Koivuluoto H, Lusvarghi L, Lyphout C, et al. Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment. Surf Coat Tech. 2015;265:125–44. https://doi.org/10.1016/j.surfcoat.2015.01.048. BolelliG BergerL-M BornerT KoivuluotoH LusvarghiL LyphoutC Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment Surf Coat Tech 2015 265 125 44 https://doi.org/10.1016/j.surfcoat.2015.01.048. 10.1016/j.surfcoat.2015.01.048 Search in Google Scholar

Bolelli G, Berger L-M, Bonetti M, Lusvarghi L. Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hard metal coatings. Wear. 2014;309:96–111. https://doi.org/10.1016/j.wear.2013.11.001. BolelliG BergerL-M BonettiM LusvarghiL Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hard metal coatings Wear 2014 309 96 111 https://doi.org/10.1016/j.wear.2013.11.001. 10.1016/j.wear.2013.11.001 Search in Google Scholar

Matikainen V, Peregrina SR, Ojala N, Koivuluoto H, Schubert J, Houdkova S, et al. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surf Coat Tech. 2019;370:196–212. https://doi.org/10.1016/j.surfcoat.2019.04.067. MatikainenV PeregrinaSR OjalaN KoivuluotoH SchubertJ HoudkovaS Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes Surf Coat Tech 2019 370 196 212 https://doi.org/10.1016/j.surfcoat.2019.04.067. 10.1016/j.surfcoat.2019.04.067 Search in Google Scholar

Santana YY, La J, Barbera-Sosa G, Caro J, Puchi-Cabrera ES, Staia MH. Mechanical properties and microstructure of WC–10Co–4Cr and WC–12Co thermal spray coatings deposited by HVOF. Surf Eng. 2008;24:374–82. https://doi.org/10.1179/174329408X326380. SantanaYY LaJ Barbera-SosaG CaroJ Puchi-CabreraES StaiaMH Mechanical properties and microstructure of WC–10Co–4Cr and WC–12Co thermal spray coatings deposited by HVOF Surf Eng 2008 24 374 82 https://doi.org/10.1179/174329408X326380. 10.1179/174329408X326380 Search in Google Scholar

Ang A, Berndt CC. A review of testing methods for thermal spray coatings. Int Mater Rev. 2014;59:179–223. https://doi.org/10.1179/1743280414Y.0000000029. AngA BerndtCC A review of testing methods for thermal spray coatings Int Mater Rev 2014 59 179 223 https://doi.org/10.1179/1743280414Y.0000000029. 10.1179/1743280414Y.0000000029 Search in Google Scholar

Garfias Bulnes A, Albaladejo Fuentes V, Garcia Cano I, Dosta S. Understanding the influence of high velocity thermal spray techniques on the properties of different anti-wear WC-based coatings. Coatings. 2020;10:1157. https://doi.org/10.3390/coatings10121157. Garfias BulnesA Albaladejo FuentesV Garcia CanoI DostaS Understanding the influence of high velocity thermal spray techniques on the properties of different anti-wear WC-based coatings Coatings 2020 10 1157 https://doi.org/10.3390/coatings10121157. 10.3390/coatings10121157 Search in Google Scholar

Wesmann JAR, Kuroda S, Espallargas N. The role of oxide tribofilms on friction and wear of different thermally sprayed WC-CoCr. J Therm Spray Technol. 2017;26:492–502. https://doi.org/10.1007/s11666-017-0522-0. WesmannJAR KurodaS EspallargasN The role of oxide tribofilms on friction and wear of different thermally sprayed WC-CoCr J Therm Spray Technol 2017 26 492 502 https://doi.org/10.1007/s11666-017-0522-0. 10.1007/s11666-017-0522-0 Search in Google Scholar

Xie M, Zhang S, Li M. Comparative investigation on HVOF sprayed Carbide-based coatings. Appl Surf Sci. 2013;273:799–805. https://doi.org/10.1016/j.apsusc.2013.03.010. XieM ZhangS LiM Comparative investigation on HVOF sprayed Carbide-based coatings Appl Surf Sci 2013 273 799 805 https://doi.org/10.1016/j.apsusc.2013.03.010. 10.1016/j.apsusc.2013.03.010 Search in Google Scholar

Wang H, Wang X, Song X, Liu XX, Liu XX. Sliding wear behavior of nanostructured WC-Co-Cr coatings. Appl Surf Sci. 2015;355:453–60 https://doi.org/10.1016/j.apsusc.2015.07.144. WangH WangX SongX LiuXX LiuXX Sliding wear behavior of nanostructured WC-Co-Cr coatings Appl Surf Sci 2015 355 453 60 https://doi.org/10.1016/j.apsusc.2015.07.144. 10.1016/j.apsusc.2015.07.144 Search in Google Scholar

Federeci M, Menapace C, Moscatelli A, Gialanella S, Straffelini G. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300°C. Tribol Int. 2017;115:89–99. https://doi.org/10.1016/j.triboint.2017.05.030. FedereciM MenapaceC MoscatelliA GialanellaS StraffeliniG Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300°C Tribol Int 2017 115 89 99 https://doi.org/10.1016/j.triboint.2017.05.030. 10.1016/j.triboint.2017.05.030 Search in Google Scholar

Bhosale DG, Rathod WS. Tribological behaviour of atmospheric plasma and high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings at elevated temperatures. Ceram Int. 2020;46:12373–85. https://doi.org/10.1016/j.ceramint.2020.01.288. BhosaleDG RathodWS Tribological behaviour of atmospheric plasma and high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings at elevated temperatures Ceram Int 2020 46 12373 85 https://doi.org/10.1016/j.ceramint.2020.01.288. 10.1016/j.ceramint.2020.01.288 Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais