Accès libre

The Potential Wind Power Resource in Central-South of the Constanta County

   | 17 févr. 2020
À propos de cet article

Citez

[1] Bao, X. & Zhang, F. (2013). Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau. Jounal of Climate. 26(1), 206–214. https://doi.org/10.1175/JCLI-D-12-00056.1;Search in Google Scholar

[2] Cannon, D.J., Brayshaw, D.J. & al. (2015). Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain, Renewable Energy. 75 (0), 767-778. https://doi.org/10.1016/j.renene.2014.10.024;Search in Google Scholar

[3] Drew, D.J. Cannon, D.J. & al. (2015). The impact of future offshore wind farms on wind power generation in Great Britain, Resources. 4 (1), 155-171. https://doi.org/10.3390/resources4010155;Search in Google Scholar

[4] Hofer, M., Marzeion, B. & Mölg, T. (2012). Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Climate Dynamics. 39(7-8), 1969–1980. http://doi.org/10.1007/s00382-012-1501-2;Search in Google Scholar

[5] Huber, M., Dimkova, D. & Hamacher, T. (2014). Integration of wind and solar power in Europe: assessment of flexibility requirements, Energy. 69 (0), 236-246. https://doi.org/10.1016/j.energy.2014.02.109;Search in Google Scholar

[6] Olauson, J. (2018). ERA5: The new champion of wind power modelling?, Renewable Energy. 126. https://doi.org/10.1016/j.renene.2018.03.056;Search in Google Scholar

[7] Olauson, J. & Bergkvist, M. (2015). Modelling the Swedish wind power production using MERRA reanalysis data, Renewable Energy. 76 (0), 717-725. https://doi.org/10.1016/j.renene.2014.11.085;Search in Google Scholar

[8] Pryor, S. C., Shepherd, T. J. & Barthelmie, R. J. (2018). Interannual variability of wind climates and wind turbine annual energy production, Wind Energy Science. 3, 651–665. https://doi.org/10.5194/wes-3-651-8;Search in Google Scholar

[9] Roebeling, R., Schulz, J. & al. (9-11December 2015). ERA-CLIM-WP3:Satellite data reprocessing and inter-calibration. Conference: ERA-CLIM2. Distributed by the ECMWF: https://www.ecmwf.int/node/14712;Search in Google Scholar

[10] Sharp E., Dodds, P. & al (2015). Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information, Renewable Energy. 77 (0), 527-538. https://doi.org/10.1016/j.renene.2014.12.025;Search in Google Scholar

[11] Staffell, I. & Pfenninger. S. (2016). Using bias-corrected reanalysis to simulate current and future wind power output, Energy. 114, 1224-1239. https://doi.org/10.1016/j.energy.2016.08.068;Search in Google Scholar

[12] Văcăreanu, R., Pavel, F. & al. (2015). Elemente de analiză a hazardului seismic, Bucharest, Romania: Conspress;Search in Google Scholar

[13] Worqlul, A. W., Maathuis, B. & al. (2014). Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrology and Earth System Sciences. 18(1), 4871-4881. https://doi.org/10.5194/hess-18-4871-2014;Search in Google Scholar

[14] Yates, H. W., (1977). Measurement of the Earth radiation balance as an instrument design problem. Applied Optics. 16, 297–299. https://doi.org/10.1364/AO.16.000297.10.1364/AO.16.00029720168484Search in Google Scholar

eISSN:
2066-6934
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other