Accès libre

Health risk assessment in the vicinity of a copper smelter: particulate matter collected on a spider web

À propos de cet article

Citez

Al-Shidi, H.K., Al-Reasi, H.A., & Sulaiman, H. (2022). Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments. International Journal of Environmental Health Research, 32, 264–276. DOI: 10.1080/09603123.2020.175180632281889 Open DOISearch in Google Scholar

Bartz, W., Górka, M., Rybak, J., Rutkowski, R., & Stojanowska, A. (2021). The assessment of effectiveness of SEM- EDX and ICP-MS methods in the process of determining the mineralogical and geochemical composition of particulate matter deposited on spider webs. Chemosphere, 278, 130454. DOI: 10.1016/j.chemo-sphere.2021.130454 Open DOISearch in Google Scholar

Bartz, W., Rogóż, J., Rogal, R., Cupa, A., & Szroeder, P. (2012). Characterization of historical lime plasters by combined non-destructive and destructive tests: The case of the sgraffito in Bożnów (SW Poland). Construction and Building Materials, 30, 439–446. DOI: 10.1016/j.conbuildmat.2011.12.045 Open DOISearch in Google Scholar

Behrooz, R. D., Kaskaoutis, D. G., Grivas, G., & Mihalopoulos, N. (2021). Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere, 262, 127835. DOI: 10.1016/j.chemosphere.2020.12783532763581 Open DOISearch in Google Scholar

Boev, I., Shijakova-Ivanova, T., & Mirakovski, D. (2013). Scanning electron microprobe characterization of air filters from the Kavadartsi town and Tikvesh valley. Geologica Macedonia, 27, 13–24. Search in Google Scholar

Ciężka, M. M., Górka, M., Modelska, M., Tyszka, R., Samecka-Cymerman, A., Lewińska, A., Łubek, A., & Widory, D. (2018). The coupled study of metal concentrations and electron paramagnetic resonance (EPR) of lichens (Hypogymnia physodes) from the Świętokrzyski National Park—environmental implications. Environmental Science and Pollution Research, 25(4), 25348–25362. DOI: 10.1007/s11356-018-2586-x613312629946844 Open DOISearch in Google Scholar

Dancewicz, A., Otop, I., & Szalińska, W. (2009). Evaluation of environmental conditions in lower Silesia voivodeship in the aspect of their use for wind energy (in Polish). Wrocław, Poland: Instytut Meteorologii i Gospodarki Wodnej. Search in Google Scholar

Deer, W. A., Howie, R. A., & Zussman, J. (2013). An Introduction to the Rock-Forming Minerals (3 ed.). London, England: Mineralogical Society of Great Britain and Ireland.10.1180/DHZ Search in Google Scholar

Ferreira-Baptista, L. & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501-4512. DOI: 10.1016/j.atmosenv.2005.03.026 Open DOISearch in Google Scholar

GDDKiA (2015, August), General Measurement Of Traffic. Retrieved August 15, 2022, from https://www.gddkia.gov.pl/userfiles/articles/g/generalny-pomiar-ruchu-w-2015_15598//SYNTEZA/WYNIKI_GPR2015_DW.pdf Search in Google Scholar

GIOŚ. (2019). Annual assessment of air quality in Lower Silesia voivodeship- voivodship report for 2018. Wrocław, Poland: GIOŚ. Search in Google Scholar

Górka, M., Bartz, W., & Rybak, J. (2018). The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. Journal of Aerosol Science, 123, 63-75. DOI: 10.1016/j. jaerosci.2018.06.008 Open DOISearch in Google Scholar

Górka, M., Bartz, W., Skuridina, A., & Potysz, A. (2020). Populus nigra Italica Leaves as a Valuable Tool for Miner-alogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis. Atmosphere, 11(10), 1126. DOI: 10.3390/atmos11101126 Open DOISearch in Google Scholar

Grigoratos, T., & Martini, G. (2014). Brake wear particle emissions: a review. Environmental Science and Pollution Research, 22(4), 2491–2504. DOI: 10.1007/s11356-014-3696-8431587825318420 Open DOISearch in Google Scholar

Grigoratos, T., & Martini, G. (2014). Non-exhaust traffic related emissions. Brake and tyre wear PM. European Union: European Commission, Joint Research Centre, Institute of Energy and Transport. Search in Google Scholar

Hao, Y., Li, Q., Pan, Y., Liu, Z., Wu, S., Xu, Y., & Qian, G. (2017). Heavy metals distribution characteristics of FGD gypsum samples from Shanxi province 12 coal-fired power plants and its potential environmental impacts. Fuel, 209, 238–245. DOI: 10.1016/j.fuel.2017.07.094 Open DOISearch in Google Scholar

Hong, N., Zhu, P., Liu, A., Zhao, X., & Guan, Y. (2018). Using an innovative flag element ratio approach to tracking potential sources of heavy metals on urban road surfaces. Environmental Pollution, 243, 410–417. DOI: 10.1016/j.envpol.2018.08.09830212796 Open DOISearch in Google Scholar

Hose, G. C., James, J. M., & Gray, M. R. (2002). Spider webs as environmental indicators. Environmental Pollution,120(3), 725-733. DOI: 10.1016/S0269-7491(02)00171-912442796 Open DOISearch in Google Scholar

Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T. K., Gupta, A., Gupta, N. C., & Sharma, C. (2017). Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637-14656. DOI: 10.1007/s11356-017-8925-528455568 Open DOISearch in Google Scholar

Kelly, V. R., Lovett, G. M., Weathers, K. C., Findlay, S. E. G., Strayer, D. L., Burns, D. J., & Likens, G. E. (2008). Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Environmental Science & Technology, 42, 410–415. DOI: 10.1021/es071391l18284139 Open DOISearch in Google Scholar

KGHM. (2022, August). Produkty. Retrieved August 27, 2022, from https://kghm.com Search in Google Scholar

Kosior, G., Samecka-Cymerman, A., Chmielewski, A., Wier-zchnicki, R., Derda, M., & Kempers, A. J. (2008). Native and transplanted Pleurozium schreberi (Brid.)Mitt. As a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland). Atmospheric Environment, 42(6), 1310-1318. DOI: 10.1016/j.atmosenv.2007.10.086 Open DOISearch in Google Scholar

Kosior, G., Klánová, J., Vaňková, L., Kukučka, P., Chropeňová, M., Brudzińska-Kosior, A., Samecka-Cymerman, A., Kolon, K., & Kempers, A. J. (2015). Pleurozium schreberi as an ecological indicator of polybrominated diphenyl ethers (PBDEs) in a heavily industrialized urban area. Ecological Indicators, 48, 492-497. DOI: 10.1016/j.ecolind.2014.09.003 Open DOISearch in Google Scholar

Kostecki, J., Greinert, A., Drab, M., Wasylewicz, R., & Walczak, B. (2015). Chemical Soil Degradation n the Area of the Głogów Copper Smelter Protective Forest/Degradacja Ziemi Na Terenach Byłej Strefy Ochronnej Huty Miedzi Głogów. Civil And Environmental Engineering Reports, 27(2), 61-71. DOI: 10.1515/ceer-2015-0022 Open DOISearch in Google Scholar

Kuehl, P. J., Anderson, T. L., Candelaria, G., Gershman, B., Harlin, K., Hesterman, J. Y., Holmes, T., Hoppin, J., Lackas, C., Norenberg, J. P., Yu, H., & McDonald, J. D. (2012). Regional particle size dependent deposition of inhaled aerosols in rats and mice. Inhalation Toxicology, 24(1), 27–35. DOI: 10.3109/08958378.2011.63278722145784 Open DOISearch in Google Scholar

Lv, Y., Chen, X., Wei, S., Zhu, R., Wang, B., Chen, B., Kong, M., & Zhang, J. (2020). Sources, concentrations, and transport models of ultrafine particles near highways: a Literature Review. Building and Environment, 186, 107325. DOI: 10.1016/j.buildenv.2020.107325 Open DOISearch in Google Scholar

Markert, B. (2007). Definitions and principles for bioindication and biomonitoring of trace metals in the environment. Journal of Trace Elements in Medicine and Biology, 21(1), 77-82. DOI: 10.1016/j.jtemb.2007.09.01518039505 Open DOISearch in Google Scholar

Marosz, A. (2016). Preliminary effect of long time used sodium chloride against winter slippery on roadside trees and soil along main national road no 12. Infrastructure and Ecology of Rural Areas, 1, 177–189. DOI: 10.14597/infraeco.2016.1.1.013 Open DOISearch in Google Scholar

Massimi, L., Conti, M. E., Mele, G., Ristorini, M., Astolfi, M. L., & Canepari, S. (2019). Lichen transplants as indicators of atmospheric element concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecological Indicators, 101, 759-769. DOI: 10.1016/j.ecolind.2018.12.051 Open DOISearch in Google Scholar

Matassoni, L., Pratesi, G., Centioli, D., Cadoni, F., Lucarelli, F., Nava, S., & Malesani, P. (2011). Saharan dust contribution to PM10, PM2.5 and PM1 in urban and suburban areas of Rome: A comparison between single-particle SEM-EDS analysis and whole-sample PIXE analysis. Journal of Environmental Monitoring, 13(3), 732-742. DOI: 10.1039/c0em00535e21308140 Open DOISearch in Google Scholar

Mikołajczyk, A., Żyniewicz, Ś., & Błachuta, J. (2017). Information On Air Quality In The Area Of Legnica City. Wrocław, Poland: GIOŚ. Search in Google Scholar

Muszer, A. (2004). Mineralogical characteristics of metallurgical dust in the vicinity of Głogów. Physicochemical Problems of Mineral Processing, 38(1), 329–340. Search in Google Scholar

Muszer, Antoni. (2007). Charakterystyka sferul i minerałów akcesorycznych z wybranych utworów fanerozoicznych i antropogenicznych. Wrocław, Poland: Fundacja Ostoja. Search in Google Scholar

Nkansah, M. A., Darko, G., Dodd, M., Opoku, F., Bentum Essuman, T., & Antwi-Boasiako, J. (2017). Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environmental Science, 3(1), 1-19. DOI: 10.1080/23311843.2017.1412153 Open DOISearch in Google Scholar

Nowicki, Z. (2009). Underground water of Polish cities (in Polish). Warszawa, Poland: Państwowy Instytut Geologiczny. Search in Google Scholar

Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839. DOI: 10.1289/ehp.7339125764216002369 Open DOISearch in Google Scholar

Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6-7), 437-45. DOI: 10.1080/0895837049043959715204759 Open DOISearch in Google Scholar

Olawoyin, R., Schweitzer, L., Zhang, K., Okareh, O., & Slates, K. (2018). Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia. Ecotoxicology and Environmental Safety, 148, 72-81. DOI: 10.1016/j. ecoenv.2017.09.069 Open DOISearch in Google Scholar

Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., & Maharaj Kumari, K. (2013). SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol and Air Quality Research, 13(2), 523–536. DOI: 10.4209/aaqr.2012.04.0095 Open DOISearch in Google Scholar

Reed, S. J. B. (2005). Electron microprobe analysis and scanning electron microscopy in geology (2 ed.). Cambridge, England: Cambridge University Press.10.1017/CBO9780511610561 Search in Google Scholar

Roberts, M. J. (1995). Spiders of Britain and Northern Europe. London, England: Harpercollins Publishers. Search in Google Scholar

Roduit, N. (2007). JmicroVision : un logiciel d’analyse d’images pétrographiques polyvalent. Université de Genève. Search in Google Scholar

Rybak, J., & Olejniczak, T. (2014). Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environmental Science and Pollution Research, 21(3), 2313-2324. DOI: 10.1007/s11356-013-2092-0390654624057980 Open DOISearch in Google Scholar

Rybak, J. (2015). Accumulation of Major and Trace Elements in Spider Webs. Water, Air, and Soil Pollution, 226(4), 105. DOI: 10.1007/s11270-015-2369-7436656225821258 Open DOISearch in Google Scholar

Schintu, M., Cogoni, A., Durante, L., Cantaluppi, C., & Contu, A. (2005). Moss (Bryum radiculosum) as a bioindicator of trace metal deposition around an industrialised area in Sardinia (Italy). Chemosphere, 60(5), 610-618. DOI: 10.1016/j.chemosphere.2005.01.05015963799 Open DOISearch in Google Scholar

Sokal, R. R., & Rohlf, F. J. (2012). Biometry: the principles and practice of statistics in biological research (4 ed.). New York, USA: W.H. Freeman and Company. Search in Google Scholar

StataCorp. (2013). Stata Statistical Software: Release 13. College Station, TX: StataCorp LP. Search in Google Scholar

Stojanowska, A., Rybak, J., Bożym, M., Olszowski, T., & Bihałowicz, J. S. (2020). Spider webs and lichens as bioindicators of heavy metals: A comparison study in the vicinity of a copper smelter (Poland). Sustainability, 12(19), 8066. DOI: 10.3390/su12198066 Open DOISearch in Google Scholar

Stojanowska, A., Zeynalli, F., Wróbel, M., & Rybak, J. (2022). The use of spider webs in the monitoring of air quality – a review. Integrated Environmental Assessment and Management. DOI: 10.1002/ieam.460735304975 Open DOISearch in Google Scholar

Stojanowska, A., Mach, T., Olszowski, T., Bihałowicz, J. S., Górka, M., Rybak, J., Rajfur, M., & Świsłowski, P. (2021). Air Pollution Research Based on Spider Web and Parallel Continuous Particulate Monitoring—A Comparison Study Coupled with Identification of Sources. Minerals, 11(8), 812. DOI: 10.3390/min11080812 Open DOISearch in Google Scholar

Strzelec, Ł., & Niedźwiecka, W. (2012). Stan środowiska naturalnego w rejonie oddziaływania hut miedzi. Kierunki zmian. Environmental Medicine, 15(2), 21–31. Search in Google Scholar

Teper, E. (2009). Dust-particle migration around flotation tailings ponds: Pine needles as passive samplers. Environmental Monitoring and Assessment, 154, 383–391. DOI: 10.1007/s10661-008-0405-418568408 Open DOISearch in Google Scholar

Topolnicki, M. (2021).Informator Huty Miedzi Legnica (in Polish). Poland: KGHM. Search in Google Scholar

Tyszka, R., Pietranik, A., Kierczak, J., Ettler, V., Mihaljevič, M., & Medyńska-Juraszek, A. (2016). Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland). Environmental Science and Pollution Research, 23(23), 24350-24363. DOI: 10.1007/s11356-016-7655-4511070627655618 Open DOISearch in Google Scholar

US EPA. (1989). Risk assessment guidance for superfund, Vol. I: Human health evaluation. Washington, United States: Environmental Protection Agency. Search in Google Scholar

US EPA. (2001). Risk Assessment Guidance for Superfund (RAGS) Volume III - Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B. Washington, United States: Environmental Protection Agency. US EPA. (2004). Integrated Risk Information System: Lead. Washington, United States: Environmental Protection Agency. Search in Google Scholar

US EPA. (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Washington, United States: Environmental Protection Agency. Search in Google Scholar

US EPA. (2014). Framework for Human Health Risk Assessment to Inform Decision Making. Washington, United States: Environmental Protection Agency. Search in Google Scholar

Voutsa, D., Anthemidis, A., Giakisikli, G., Mitani, K., Besis, A., Tsolakidou, A., & Samara, C. (2015). Size distribution of total and water-soluble fractions of particle-bound elements—assessment of possible risks via inhalation. Environmental Science and Pollution Research, 22(17), 13412-13426. DOI: 10.1007/s11356-015-4559-725940472 Open DOISearch in Google Scholar

Wang, L., Gong, H., Liao, W., & Wang, Z. (2015). Accumulation of particles on the surface of leaves during leaf expansion. Science of the Total Environment, 532(1), 420-434. DOI: 10.1016/j.scitotenv.2015.06.01426093221 Open DOISearch in Google Scholar

Weather Online. (2018, August). Weather Online. Retrieved August 15, 2022, from https://www.woeurope.eu/ Search in Google Scholar

WHO. (2006). Health risks of particulate matter from long-range transboundary air pollution. Geneva, Switzerland: World Health Organization. Search in Google Scholar

WHO. (2019). Exposure to arsenic: a major public health concern. Geneva, Switzerland: World Health Organization. Search in Google Scholar

Xiao-li, S., Yu, P., Hose, G. C., Jian, C., & Feng-xiang, L. (2006). Spider webs as indicators of heavy metal pollution in air. Bulletin of Environmental Contamination and Toxicology, 76(2), 271-277 DOI: 10.1007/s00128-006-0917-y16468006 Open DOISearch in Google Scholar

eISSN:
1899-8526
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, Geophysics, other