1. bookVolume 53 (2022): Edition 1 (January 2022)
Détails du magazine
Première parution
05 Feb 2007
1 fois par an
access type Accès libre

Mineralogical and geochemical evidence for two-stage silicification of serpentinized peridotites from the Szklary Massif (NE Bohemian Massif)

Publié en ligne: 15 Jun 2022
Volume & Edition: Volume 53 (2022) - Edition 1 (January 2022)
Pages: 20 - 35
Reçu: 25 Jan 2022
Accepté: 17 May 2022
Détails du magazine
Première parution
05 Feb 2007
1 fois par an

Previously unknown exposures of silicified serpentinites have been documented within the Szklary Massif, which is a fragment of the tectonically dismembered Central Sudetic Ophiolite (NE Bohemian Massif). On the basis of textural, mineralogical and chemical differences, two types of silicified serpentinites have been distinguished in this study (Type I and Type II). Type I is characterized by well-preserved primary minerals cut by numerous veinlets filled with microscale euhedral quartz crystals. Studied samples of Type I are enriched in silica (from 62 to 69 wt.% SiO2) and depleted in magnesium (from 10 to 19 wt.% MgO) in comparison to serpentinized peridotites from the Szklary Massif. Type II is almost exclusively composed of amorphous or poorly crystalline silica, with microquartz aggregates being the most abundant form. Silicified serpentinites of Type II show extremely high values of silica (from 83 to 90 wt.% SiO2) and low magnesium concentrations (from 4 to 8 wt.% MgO). Both types of silicified serpentinites have elevated content of REE and many other trace elements generally regarded as incompatible. We infer that the earlier silicification event was caused by the percolation of Si-rich hydrothermal fluids derived from igneous rocks, which intruded this area from ca. 380 to 330 Ma. A subsequent silicification event is the result of silica remobilization during intense chemical weathering under tropical conditions, which could have occurred between Late Cretaceous and Miocene.


Aftabi, A., & Zarrinkoub, M., H. (2013). Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu–Au ore exploration in metaophiolites. Lithos, 156–159, 186–203. DOI: 10.1016/j.lithos.2012. Search in Google Scholar

Aiglsperger, T., Proenza, J. A., Lewis, J. F., Labrador, M., Svojtka, M., Rojas-Purón, A., Longo, F., & Ďurišová, J. (2016). Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geology Reviews, 73, 127–147. DOI: 10.1016/j.oregeorev.2015. Search in Google Scholar

Aleksandrowski, P., & Mazur, S. (2002). Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. Geological Society, London, Special Publications, 201(1), 237–277. DOI: 10.1144/GSL.SP.2002. Search in Google Scholar

Auclair, M., Gauthier, M., Trottier, J., Jebrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu- Zn deposit, Quebec Appalachians. Economic Geology, 88(1), 123–138. DOI: 10.2113/gsecongeo. Search in Google Scholar

Awdankiewicz, M., Kryza, R., Turniak, K., Ovtcharova, M., & Schaltegger, U. (2021). The Central Sudetic Ophiolite (European Variscan Belt): Precise U-Pb zircon dating and geotectonic implications. Geological Magazine, 158(3), 555–566. DOI: 10.1017/S0016756820000722.10.1017/S0016756820000722 Search in Google Scholar

Badura, J., & Dziemiańczuk, E. (1981). Szczegółowa mapa geologiczna sudetów 1:25 000, ark. Ząbkowice Śląskie. Wydawnictwo Geologiczne, Warszawa. Search in Google Scholar

Boskabadi, A., Pitcairn, I. K., Leybourne, M. I., Teagle, D. A. H., Cooper, M. J., Hadizadeh, H., Nasiri Bezenjani, R., & Monazzami Bagherzadeh, R. (2020). Carbonation of ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern Iran. Lithos, 352–353, 105307. DOI: 10.1016/j.lithos.2019.105307.10.1016/j.lithos.2019.105307 Search in Google Scholar

Butt, C. R. M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9(2), 123–128. DOI: 10.2113/gselements. Search in Google Scholar

Čermáková, Z., Hradil, D., Bezdička, P., & Hradilová, J. (2017). New data on “kerolite–pimelite” series and the colouring agent of Szklary chrysoprase, Poland. Physics and Chemistry of Minerals, 44(3), 193–202. DOI: 10.1007/s00269-016-0848-z.10.1007/s00269-016-0848-z Search in Google Scholar

Coleman, R. G. (1971). Petrologic and Geophysical Nature of Serpentinites. GSA Bulletin, 82(4), 897–918. DOI: 10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2. Search in Google Scholar

Dill, H. G. (2017). Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth-Science Reviews, 165, 1–58. DOI: 10.1016/j.earscirev.2016. Search in Google Scholar

Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland - classification, origin, and implication. Economic Geology, 90(6), 1841–1856. DOI: 10.2113/gsecongeo.90.6.1841.10.2113/gsecongeo.90.6.1841 Search in Google Scholar

Dubińska, E. (1995). Zróżnicowanie materiału wyjściowego zwietrzeliny a rozwój laterytowych rud niklu. Przewodnik LXVI Zjazdu Polskiego Towarzystwa Geologicznego, 207–212. Search in Google Scholar

Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., & Kulicki, C. (2004). U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203(3–4), 183–203. DOI: 10.1016/j.chemgeo.2003. Search in Google Scholar

Dubińska, E., & Gunia, P. (1997). The Sudetic ophiolite: current view on its geodynamic model. Geological Quarterly, 41, 1–20. Search in Google Scholar

Dubińska, E., Sakharov, B. A., Kaproń, G., Bylina, P., & Kozubowski, J. A. (2000). Layer silicates from Szklary (Lower Silesia): from ocean floor metamorhism to continental chemical weathering. Geologia Sudetica, 33(2), 85–105. Search in Google Scholar

Duparc, L., Molly, E., & Borloz, A. (1927). Sur la Birbiriten une nouvelle roche. Compte Rendu Des Séances de La Société de Physique et D’Histoire Naturelle de Genève, 44, 137–139. Search in Google Scholar

Elias, M. (2002). Nickel laterite deposits – geological overview, resources and exploitation. Centre for Ore Deposit Research, University of Tasmania, Hobart, Special Publication, 4, 205–220. Search in Google Scholar

Flörke, O.W., Graetsch, H., Martin, B., Röller, K., Wirth, R. (1991). Nomenclature of micro-and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrbuch Mineralogie, Abhandlungen, 163, 19–42. Search in Google Scholar

Franke, W., & Żelaźniewicz, A. (2000). The eastern termination of the Variscides: terrane correlation and kinematic evolution. Geological Society, London, Special Publications, 179(1), 63–86. DOI: 10.1144/GSL.SP.2000. Search in Google Scholar

Frelinger, S. N., Ledvina, M. D., Kyle, J. R., & Zhao, D. (2015). Scanning electron microscopy cathodoluminescence of quartz: Principles, techniques and applications in ore geology. Ore Geology Reviews, 65, 840–852. DOI: 10.1016/j.oregeorev.2014. Search in Google Scholar

Freyssinet, PH., Butt, C. R. M., Morris, R. C., & Piantone, P. (2005). Ore-Forming Processes Related to Lateritic Weathering. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb & J. P. Richards (Eds.), One Hundredth Anniversary Volume (pp. 681–722). Society of Economic Geologists. DOI: 10.5382/AV100.21.10.5382/AV100.21 Search in Google Scholar

Frost, B.R., & Frost, C.D. (2014). Essentials of Igneous and Metamorphic Petrology. Cambridge University Press. New York, USA. Search in Google Scholar

Gahlan, H. A., Azer, M. K., Asimow, P. D., & Al-Kahtany, K. M. (2020). Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia. Lithos, 372–373, 105679. DOI: 10.1016/J.LITHOS.2020.105679.10.1016/j.lithos.2020.105679 Search in Google Scholar

Gibson, H. L., Watkinson, D. H., & Comba, C. D. A. (1983). Silicification; hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Economic Geology, 78(5), 954–971. DOI: 10.2113/gsecongeo.78.5.954.10.2113/gsecongeo.78.5.954 Search in Google Scholar

Golightly, J. P. (2010). Progress in Understanding the Evolution of Nickel Laterites. In R. J. Goldfarb, E. E. Marsh & T. Monecke (Eds.), The Challenge of Finding New Mineral Resources, Global Metallogeny, Innovative Exploration, and New Discoveries (pp. 451-485). Society of Economic Geologists. DOI: 10.5382/SP. Search in Google Scholar

Götte, T., Pettke, T., Ramseyer, K., Koch-Muller, M., & Mullis, J. (2011). Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. American Mineralogist, 96(5–6), 802–813. DOI: 10.2138/am.2011.3639.10.2138/am.2011.3639 Search in Google Scholar

Götze, J. (2009). Chemistry, textures and physical properties of quartz — geological interpretation and technical application. Mineralogical Magazine, 73(4), 645–671. DOI: 10.1180/minmag.2009.073.4.645.10.1180/minmag.2009.073.4.645 Search in Google Scholar

Gunia, P. (2000). The petrology and geochemistry of mantle- derived basic and ultrabasic rocks from the Szklary Massif in the Fore-Sudetic Block (SW Poland). Geologia Sudetica, 33(2), 71–83. Search in Google Scholar

Gunia, P. (2007). Plagiogranites from the Szklary serpentinite massif, a component of the Sudetic ophiolite. Granitoids in Poland, AM Monograph, 1, 287–295. Search in Google Scholar

Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3–4), 303–313. DOI: 10.1007/BF00196366.10.1007/BF00196366 Search in Google Scholar

Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, & Sato, T. (2021). Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass-balance approach. Resource Geology, 71(3), 255–282. DOI: 10.1111/rge.12266.10.1111/rge.12266 Search in Google Scholar

Jedrysek, M. O., & Halas, S. (1990). The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: preliminary δ13C and δ18O investigations. Terra Nova, 2(2), 154–159. DOI: 10.1111/j.1365-3121.1990.tb00057.x.10.1111/j.1365-3121.1990.tb00057.x Search in Google Scholar

Kempe, U., Möckel, R., Graupner, T., Kynicky, & Dombon, E. (2015). The genesis of Zr–Nb–REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geology Reviews, 64, 602–625. DOI: 10.1016/j.oregeorev.2014. Search in Google Scholar

Klein, F., & Garrido, C. J. (2011). Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos, 126(3–4), 147–160. DOI: 10.1016/j.lithos.2011. Search in Google Scholar

Kryza, R., & Pin, C. (2010). The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research, 17(2–3), 292–305. DOI: 10.1016/j.gr.2009. Search in Google Scholar

Lacinska, A. M., & Styles, M. T. (2013). Silicified serpentinite – A residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates. Geological Magazine, 150(3), 385–395. DOI: 10.1017/S0016756812000325.10.1017/S0016756812000325 Search in Google Scholar

Mazur, S., Aleksandrowski, P., Kryza, R., & Oberc-Dziedzic, T. (2006). The Variscan Orogen in Poland. Geological Quarterly, 50(1), 89 – 115. Search in Google Scholar

Mazur, S., & Puziewicz, J. (1995). Mylonity strefy Niemczy. Annales Societatis Geologorum Poloniae, 64, 23–52. Search in Google Scholar

Mikulski, S. (2014). Silnie krzemionkowy zażelaziony metasomatyt (birbiryt) ze strefy zwietrzenia masywu serpentynitowego w złożu niklu w Szklarach na Dolnym Śląsku. Biuletyn Państwowego Instytutu Geologicznego, 458, 61–72. Search in Google Scholar

Moctar, D. O., Moukadiri, A., Boushaba, A., Lemine, S. O. M., & Dubois, M. (2019). Petrographical and Geochemical Characteristics of the Mauritanides Belts’ Birbirites. In D. Doronozo, E. Schingaro, J. S. Armstrong-Altrin & B. Zoheir (Eds.), Petrogenesis and Exploration of the Earth’s Interior (pp. 55–57). Springer Nature, Switzerland. DOI: 10.1007/978-3-030-01575-6_13.10.1007/978-3-030-01575-6_13 Search in Google Scholar

Molly, E. W. (1959). Platinum deposits of Ethiopia. Economic Geology, 54(3), 467–477. DOI: 10.2113/gsecongeo.54.3.467.10.2113/gsecongeo.54.3.467 Search in Google Scholar

Niśkiewicz, J. (1967). Budowa geologiczna Masywu Szklar. Rocznik Polskiego Towarzystwa Geologicznego, 37, 387–415. Search in Google Scholar

Niśkiewicz, J. (2000). Pokrywa zwietrzelinowa masywu Szklar i jej niklonośność (The Szklary Massif nickel-bearing weathering cover). Geologia Sudetica, 33(2), 107–130. Search in Google Scholar

Pieczka, A., Cooper, M. A., & Hawthorne, F. C. (2019). Lepageite, Mn32+(Fe73+Fe42+) O3[Sb53+As83+O34], a new arsenite-antimonite mineral from the Szklary pegmatite, Lower Silesia, Poland. American Mineralogist, 104(7), 1043–1050. DOI: 10.2138/am-2019-6903.10.2138/am-2019-6903 Search in Google Scholar

Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J., & Nejbert, K. (2015). Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic Pegmatites, Fieldtrip Guidebook (pp. 73–103). Search in Google Scholar

Pietranik, A., Storey, C., & Kierczak, J. (2013). The Niemcza diorites and monzodiorites (Sudetes, SW Poland): A record of changing geotectonic setting at ca. 340 Ma. Geological Quarterly, 57(2), 325–334. DOI: 10.7306/gq.1084.10.7306/gq.1084 Search in Google Scholar

Rusk, B. (2012). Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In J. Götze & R. Möckel (Eds.), Quartz: Deposits, Mineralogy and Analytics (pp. 307–329). Springer. DOI: 10.1007/978-3-642-22161-3_14.10.1007/978-3-642-22161-3_14 Search in Google Scholar

Salvi, S., Fontan, F., Monchoux, P, Williams-Jones, A. E., & Moine, B. (2000). Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Economic Geology, 95(3), 559–576. DOI: 10.2113/gsecongeo.95.3.559.10.2113/gsecongeo.95.3.559 Search in Google Scholar

Schaltegger, U. (2007). Hydrothermal Zircon. Elements, 3(1), 51–79. DOI: 10.2113/gselements. Search in Google Scholar

Sherman, G. D., Kanehiro, Y., & Matsu Saka, Y. (1953). Role of dehydration in development of the laterite crust. Pacific Science, 7, 438–446. Search in Google Scholar

Spiridonov, E. M. (1991). Listvenites and zodites. International Geology Review, 33(4), 397–407. DOI: 10.1080/00206819109465698.10.1080/00206819109465698 Search in Google Scholar

Ulrich, M., Cathelineau, M., Muñoz, M., Boiron, M.-C., Teitler, Y., & Karpoff, A. M. (2019). The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. Journal of Geochemical Exploration, 197, 93–113. DOI: 10.1016/j.gexplo.2018. Search in Google Scholar

Wiewióra, A. & Szpila, K. (1975). Nickel Containing Regularly Interstratified Chlorite-Saponite from Szklary, Lower Silesia, Poland. Clays and Clay Minerals, 23, 91–96. DOI: 10.1346/CCMN.1975.023020210.1346/CCMN.1975.0230202 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo