Therapeutic Potential of Asparagus racemosus and Vitex negundo Against Polycystic Ovarian Syndrome in Wistar Rats: Exploring an Oxidative Stress Independent Mechanism
This work is licensed under the Creative Commons Attribution 4.0 International License.
Escobar-Morreale, H.F. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 14(5): 270-284. https://doi.org/10.1038/nrendo.2018.24 PMid:29569621Search in Google Scholar
Witchel, S.F., Oberfield, S.E., Peña, A.S. (2019). Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls [presentation]. J Endocr Soc. 3(8): 1545-1573. https://doi.org/10.1210/js.2019-00078 PMid:31384717 PMCid:PMC6676075Search in Google Scholar
Sanchez-Garrido, M.A., Tena-Sempere, M. (2020). Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 35, 100937. https://doi.org/10.1016/j.molmet.2020.01.001 PMid:32244180 PMCid:PMC7115104Search in Google Scholar
Palomba, S., Daolio, J., La Sala, G.B. (2017). Oocyte competence in women with polycystic ovar y syndrome. Trends Endocrinol Metab. 28(3): 186-198. https://doi.org/10.1016/j.tem.2016.11.008 PMid:27988256Search in Google Scholar
Dadachanji, R., Shaikh, N., Mukherjee, S. (2018). Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet Res Int. 2018, 7624932. https://doi.org/10.1155/2018/7624932 PMid:29670770 PMCid:PMC5835258Search in Google Scholar
Xu, X.L., Deng, S.L., Lian, Z.X., Yu, K. (2021). Estrogen receptors in polycystic ovary syndrome. Cells. 10(2): 459. https://doi.org/10.3390/cells10020459 PMid:33669960 PMCid:PMC7924872Search in Google Scholar
González, F., Nair, K.S., Daniels, J.K., Basal, E., Schimke, J.M., Blair, H.E. (2012). Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 97(8): 2836-2843. https://doi.org/10.1210/jc.2012-1259 PMid:22569241 PMCid:PMC3410256Search in Google Scholar
Rudnicka, E., Duszewska, A.M., Kucharski, M., Tyczyński, P., Smolarczyk, R. (2022). Oxidative stress and reproductive function: oxidative stress in polycystic ovary syndrome. Reproduction. 164(6): F145-F154. https://doi.org/10.1530/REP-22-0152 PMid:36279177Search in Google Scholar
Jensterle, M., Kravos, N.A., Ferjan, S., Goricar, K., Dolzan, V., Janez, A. (2020). Long-term efficacy of metformin in overweight-obese PCOS: longitudinal follow-up of retrospective cohort. Endocr Connect. 9(1): 44-54. https://doi.org/10.1530/EC-19-0449 PMid:31829964 PMCid:PMC6993269Search in Google Scholar
Alesi, S., Forslund, M., Melin, J., Romualdi, D., Peña, A., Tay, C.T., Witchel, S.F., et al. (2023). Efficacy and safety of anti-androgens in the management of polycystic ovary syndrome: a systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine. 63, 102162. https://doi.org/10.1016/j.eclinm.2023.102162 PMid:37583655 PMCid:PMC10424142Search in Google Scholar
Forslund, M., Melin, J., Alesi, S., Piltonen, T., Romualdi, D., Tay, C.T., Witchel, S., et al. (2023). Different kinds of oral contraceptive pills in polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 189(1): S1-S16. https://doi.org/10.1093/ejendo/lvad082 PMid:37440702Search in Google Scholar
Lanzo, E., Monge, M., Trent, M. (2015). Diagnosis and management of polycystic ovary syndrome in adolescent girls. Pediatr Ann. 44(9): e223-230. https://doi.org/10.3928/00904481-20150910-10 PMid:26431241 PMCid:PMC5659205Search in Google Scholar
Rathee, P., Rathee, S. (2022). A review of polycystic ovarian syndrome in Ayurveda. IRJAY 05(2): 114-117. https://doi.org/10.47223/IRJAY.2022.5220Search in Google Scholar
Lakshmi, J.N., Babu, A.N., Kiran, S.S.M., Nori, L.P., Hassan, N., Ashames, A. Bhandare, R.R., Shaik, A.B. (2023). Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech (Basel). 12(1): 4. https://doi.org/10.3390/biotech12010004 PMid:36648830 PMCid:PMC9844343Search in Google Scholar
Alok, S., Jain, S.K., Verma, A., Kumar, M., Mahor, A., Sabharwal, M. (2013). Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): a review. Asian Pac J Trop Dis. 3(3): 242-251. https://doi.org/10.1016/S2222-1808(13)60049-3Search in Google Scholar
Tandon, V.R. (2005). Medicinal uses and biological activities of Vitex negundo. Nat Prod Rad. 4(3): 162-165.Search in Google Scholar
Pandey, A.K., Gupta, A., Tiwari, M., Prasad, S., Pandey, A.N., Yadav, P.K., et al. (2018). Impact of stress on female reproductive health disorders: possible beneficial effects of shatavari (Asparagus racemosus). Biomed Pharmacother. 103, 46-49. https://doi.org/10.1016/j.biopha.2018.04.003 PMid:29635127Search in Google Scholar
Bano, U., Jabeen, A., Ahmed, A., Siddiqui, M.A. (2015). Therapeutic uses of Vitex nigundo. World J Pharm Med. 4(12): 589-606.Search in Google Scholar
Jajra, S.D., Panwar, N., Adlakha, M.K., Purvia, R.P., Gautam, V., Singh, C. (2019). Role of (Vitex negundo) nirgundi in pain management. World J Pharm Med. 8(7): 2083-2089.Search in Google Scholar
Siriwardene, S.D., Kar unathilaka, L.A., Kodituwakku, N.D., Karunarathne, Y.A. (2010). Clinical efficacy of Ayurveda treatment regimen on Subfertility with poly cystic ovarian syndrome (PCOS). AYU 31(1): 24-27. https://doi.org/10.4103/0974-8520.68203 PMid:22131680 PMCid:PMC3215317Search in Google Scholar
Kakadia, N., Patel, P., Deshpande, S., Shah, G. (2018). Effect of Vitex negundo L. seeds in letrozole induced polycystic ovarian syndrome. J Tradit Complement Med. 9(4): 336-345. https://doi.org/10.1016/j.jtcme.2018.03.001 PMid:31453130 PMCid:PMC6701941Search in Google Scholar
Singh, R. (2016). Asparagus racemosus: a review on its phytochemical and therapeutic potential. Nat Prod Res. 30(17): 1896-1908. https://doi.org/10.1080/14786419.2015.1092148 PMid:26463825Search in Google Scholar
Soren, A.D., Yadav, A.K. (2021). Studies on the anthelmintic potentials of the roots of Asparagus racemosus willed. Clin Phytosci. 7, 32. https://doi.org/10.1186/s40816-021-00270-8Search in Google Scholar
Kafali, H., Iriadam, M., Ozardalı, I., Demir, N. (2004). Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 35(2): 103-108. https://doi.org/10.1016/j.arcmed.2003.10.005 PMid:15010188Search in Google Scholar
Balasubramanian, A., Pachiappan, S., Mohan, S., Adhikesavan, H., Karuppasamy, I., Ramalingam, K. (2023). Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: a mechanistic approach. Heliyon. 9(5): e15488. https://doi.org/10.1016/j.heliyon.2023.e15488 PMid:37180914 PMCid:PMC10173408Search in Google Scholar
Weydert, C.J., Cullen, J.J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 5(1): 51-66. https://doi.org/10.1038/nprot.2009.197 PMid:20057381 PMCid:PMC2830880Search in Google Scholar
Rosenfield, R.L., Ehr mann, D.A. (2016). The pathogenesis of polycystic ovar y syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 37(5): 467-520. https://doi.org/10.1210/er.2015-1104 PMid:27459230 PMCid:PMC5045492Search in Google Scholar
Gervásio, C.G., Bernuci, M.P., Silva-de-Sá, M.F., Rosa-e-Silva, A.C. (2014). The role of androgen hormones in early follicular development. ISRN Obstet Gynecol. 2014, 818010. https://doi.org/10.1155/2014/818010 PMid:25006485 PMCid:PMC4003798Search in Google Scholar
Chauvin, S., Cohen-Tannoudji, J., Guigon, C.J. (2022). Estradiol signaling at the heart of folliculogenesis: its potential deregulation in human ovarian pathologies. Int J Mol Sci. 23(1): 512. https://doi.org/10.3390/ijms23010512 PMid:35008938 PMCid:PMC8745567Search in Google Scholar
Bries, A.E., Webb, J.L., Vogel, B., Carrillo, C., Keating, A.F., Pritchard, S.K., Roslan, G., et al. (2021). Letrozole-induced polycystic ovar y syndrome attenuates cystathionine-β synthase mRNA and protein abundance in the ovaries of female Sprague Dawley rats. J Nutr. 151(6): 1407-1415. https://doi.org/10.1093/jn/nxab038 PMid:33758914 PMCid:PMC8169814Search in Google Scholar
Mandalà, M. (2020). Inf luence of estrogens on uterine vascular adaptation in normal and preeclamptic pregnancies. Int J Mol Sci. 21(7): 2592. https://doi.org/10.3390/ijms21072592 PMid:32276444 PMCid:PMC7177259Search in Google Scholar
Kuiper, G.G., Lemmen, J.G., Carlsson, B.O., Corton, J.C., Safe, S.H., Van Der Saag, P.T., van der Burg, B., Gustafsson, J.A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 139(10): 4252-4263. https://doi.org/10.1210/endo.139.10.6216 PMid:9751507Search in Google Scholar
Sabnis, P.B., Gaitonde, B.B., Jetmalani M. (1968). Effects of alcoholic extracts of Asparagus racemosus on mammary glands of rats. Indian J Exp Biol. 6(1): 55-57.Search in Google Scholar
Payne, A.H., Hales, D.B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 25(6): 947-970. https://doi.org/10.1210/er.2003-0030 PMid:15583024Search in Google Scholar
Sun, Y., Zhang, J., Ping, Z., Fan, L., Wang, C., Li, W., Lu, C., Zheng, L., Zhou, X. (2011). Expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) in normal and cystic follicles in sows. Afr J Biotechnol. 10(32): 6184-6189.Search in Google Scholar
Hu, J., Zhang, Z., Shen, W.J., Azhar, S. (2010). Cellular cholesterol deliver y, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 7, 47. https://doi.org/10.1186/1743-7075-7-47 PMid:20515451 PMCid:PMC2890697Search in Google Scholar
Bednarska, S., Siejka, A. (2017). The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Adv Clin Exp Med. 26(2): 359-367. https://doi.org/10.17219/acem/59380 PMid:28791858Search in Google Scholar
Dumesic, D.A., Akopians, A.L., Madrigal, V.K., Ramirez, E., Margolis, D.J., Sarma, M.K., Thomas, A.M., et al. (2016). Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J Clin Endocrinol Metab. 101(11): 4178-4188. https://doi.org/10.1210/jc.2016-2586 PMid:27571186 PMCid:PMC5095243Search in Google Scholar
Zhang, Y., Liu, L., Yin, T.L., Yang, J., Xiong, C.L. (2017). Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 8(46): 80472-80480. https://doi.org/10.18632/oncotarget.19058 PMid:29113318 PMCid:PMC5655213Search in Google Scholar
Zuo, T., Zhu, M., Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016, 8589318. https://doi.org/10.1155/2016/8589318 PMid:26770659 PMCid:PMC4684888Search in Google Scholar
Younas, A., Hussain, L., Shabbir, A., Asif, M., Hussain, M., Manzoor, F. (2022). Effects of Fagonia indica on letrozole-induced polycystic ovarian syndrome (PCOS) in young adult female rats. Evid Based Complement Alternat Med. 2022, 1397060. https://doi.org/10.1155/2022/1397060 PMid:35664938 PMCid:PMC9162856Search in Google Scholar