Uneingeschränkter Zugang

Therapeutic Potential of Asparagus racemosus and Vitex negundo Against Polycystic Ovarian Syndrome in Wistar Rats: Exploring an Oxidative Stress Independent Mechanism

, , ,  und   
08. Aug. 2025

Zitieren
COVER HERUNTERLADEN

Escobar-Morreale, H.F. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 14(5): 270-284. https://doi.org/10.1038/nrendo.2018.24 PMid:29569621 Search in Google Scholar

Witchel, S.F., Oberfield, S.E., Peña, A.S. (2019). Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls [presentation]. J Endocr Soc. 3(8): 1545-1573. https://doi.org/10.1210/js.2019-00078 PMid:31384717 PMCid:PMC6676075 Search in Google Scholar

Sanchez-Garrido, M.A., Tena-Sempere, M. (2020). Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 35, 100937. https://doi.org/10.1016/j.molmet.2020.01.001 PMid:32244180 PMCid:PMC7115104 Search in Google Scholar

Palomba, S., Daolio, J., La Sala, G.B. (2017). Oocyte competence in women with polycystic ovar y syndrome. Trends Endocrinol Metab. 28(3): 186-198. https://doi.org/10.1016/j.tem.2016.11.008 PMid:27988256 Search in Google Scholar

Dadachanji, R., Shaikh, N., Mukherjee, S. (2018). Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet Res Int. 2018, 7624932. https://doi.org/10.1155/2018/7624932 PMid:29670770 PMCid:PMC5835258 Search in Google Scholar

Xu, X.L., Deng, S.L., Lian, Z.X., Yu, K. (2021). Estrogen receptors in polycystic ovary syndrome. Cells. 10(2): 459. https://doi.org/10.3390/cells10020459 PMid:33669960 PMCid:PMC7924872 Search in Google Scholar

González, F., Nair, K.S., Daniels, J.K., Basal, E., Schimke, J.M., Blair, H.E. (2012). Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 97(8): 2836-2843. https://doi.org/10.1210/jc.2012-1259 PMid:22569241 PMCid:PMC3410256 Search in Google Scholar

Rudnicka, E., Duszewska, A.M., Kucharski, M., Tyczyński, P., Smolarczyk, R. (2022). Oxidative stress and reproductive function: oxidative stress in polycystic ovary syndrome. Reproduction. 164(6): F145-F154. https://doi.org/10.1530/REP-22-0152 PMid:36279177 Search in Google Scholar

Jensterle, M., Kravos, N.A., Ferjan, S., Goricar, K., Dolzan, V., Janez, A. (2020). Long-term efficacy of metformin in overweight-obese PCOS: longitudinal follow-up of retrospective cohort. Endocr Connect. 9(1): 44-54. https://doi.org/10.1530/EC-19-0449 PMid:31829964 PMCid:PMC6993269 Search in Google Scholar

Alesi, S., Forslund, M., Melin, J., Romualdi, D., Peña, A., Tay, C.T., Witchel, S.F., et al. (2023). Efficacy and safety of anti-androgens in the management of polycystic ovary syndrome: a systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine. 63, 102162. https://doi.org/10.1016/j.eclinm.2023.102162 PMid:37583655 PMCid:PMC10424142 Search in Google Scholar

Forslund, M., Melin, J., Alesi, S., Piltonen, T., Romualdi, D., Tay, C.T., Witchel, S., et al. (2023). Different kinds of oral contraceptive pills in polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 189(1): S1-S16. https://doi.org/10.1093/ejendo/lvad082 PMid:37440702 Search in Google Scholar

Lanzo, E., Monge, M., Trent, M. (2015). Diagnosis and management of polycystic ovary syndrome in adolescent girls. Pediatr Ann. 44(9): e223-230. https://doi.org/10.3928/00904481-20150910-10 PMid:26431241 PMCid:PMC5659205 Search in Google Scholar

Rathee, P., Rathee, S. (2022). A review of polycystic ovarian syndrome in Ayurveda. IRJAY 05(2): 114-117. https://doi.org/10.47223/IRJAY.2022.5220 Search in Google Scholar

Lakshmi, J.N., Babu, A.N., Kiran, S.S.M., Nori, L.P., Hassan, N., Ashames, A. Bhandare, R.R., Shaik, A.B. (2023). Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech (Basel). 12(1): 4. https://doi.org/10.3390/biotech12010004 PMid:36648830 PMCid:PMC9844343 Search in Google Scholar

Alok, S., Jain, S.K., Verma, A., Kumar, M., Mahor, A., Sabharwal, M. (2013). Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): a review. Asian Pac J Trop Dis. 3(3): 242-251. https://doi.org/10.1016/S2222-1808(13)60049-3 Search in Google Scholar

Tandon, V.R. (2005). Medicinal uses and biological activities of Vitex negundo. Nat Prod Rad. 4(3): 162-165. Search in Google Scholar

Pandey, A.K., Gupta, A., Tiwari, M., Prasad, S., Pandey, A.N., Yadav, P.K., et al. (2018). Impact of stress on female reproductive health disorders: possible beneficial effects of shatavari (Asparagus racemosus). Biomed Pharmacother. 103, 46-49. https://doi.org/10.1016/j.biopha.2018.04.003 PMid:29635127 Search in Google Scholar

Bano, U., Jabeen, A., Ahmed, A., Siddiqui, M.A. (2015). Therapeutic uses of Vitex nigundo. World J Pharm Med. 4(12): 589-606. Search in Google Scholar

Jajra, S.D., Panwar, N., Adlakha, M.K., Purvia, R.P., Gautam, V., Singh, C. (2019). Role of (Vitex negundo) nirgundi in pain management. World J Pharm Med. 8(7): 2083-2089. Search in Google Scholar

Siriwardene, S.D., Kar unathilaka, L.A., Kodituwakku, N.D., Karunarathne, Y.A. (2010). Clinical efficacy of Ayurveda treatment regimen on Subfertility with poly cystic ovarian syndrome (PCOS). AYU 31(1): 24-27. https://doi.org/10.4103/0974-8520.68203 PMid:22131680 PMCid:PMC3215317 Search in Google Scholar

Kakadia, N., Patel, P., Deshpande, S., Shah, G. (2018). Effect of Vitex negundo L. seeds in letrozole induced polycystic ovarian syndrome. J Tradit Complement Med. 9(4): 336-345. https://doi.org/10.1016/j.jtcme.2018.03.001 PMid:31453130 PMCid:PMC6701941 Search in Google Scholar

Singh, R. (2016). Asparagus racemosus: a review on its phytochemical and therapeutic potential. Nat Prod Res. 30(17): 1896-1908. https://doi.org/10.1080/14786419.2015.1092148 PMid:26463825 Search in Google Scholar

Soren, A.D., Yadav, A.K. (2021). Studies on the anthelmintic potentials of the roots of Asparagus racemosus willed. Clin Phytosci. 7, 32. https://doi.org/10.1186/s40816-021-00270-8 Search in Google Scholar

Kafali, H., Iriadam, M., Ozardalı, I., Demir, N. (2004). Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 35(2): 103-108. https://doi.org/10.1016/j.arcmed.2003.10.005 PMid:15010188 Search in Google Scholar

Balasubramanian, A., Pachiappan, S., Mohan, S., Adhikesavan, H., Karuppasamy, I., Ramalingam, K. (2023). Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: a mechanistic approach. Heliyon. 9(5): e15488. https://doi.org/10.1016/j.heliyon.2023.e15488 PMid:37180914 PMCid:PMC10173408 Search in Google Scholar

Weydert, C.J., Cullen, J.J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 5(1): 51-66. https://doi.org/10.1038/nprot.2009.197 PMid:20057381 PMCid:PMC2830880 Search in Google Scholar

Rosenfield, R.L., Ehr mann, D.A. (2016). The pathogenesis of polycystic ovar y syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 37(5): 467-520. https://doi.org/10.1210/er.2015-1104 PMid:27459230 PMCid:PMC5045492 Search in Google Scholar

Gervásio, C.G., Bernuci, M.P., Silva-de-Sá, M.F., Rosa-e-Silva, A.C. (2014). The role of androgen hormones in early follicular development. ISRN Obstet Gynecol. 2014, 818010. https://doi.org/10.1155/2014/818010 PMid:25006485 PMCid:PMC4003798 Search in Google Scholar

Chauvin, S., Cohen-Tannoudji, J., Guigon, C.J. (2022). Estradiol signaling at the heart of folliculogenesis: its potential deregulation in human ovarian pathologies. Int J Mol Sci. 23(1): 512. https://doi.org/10.3390/ijms23010512 PMid:35008938 PMCid:PMC8745567 Search in Google Scholar

Bries, A.E., Webb, J.L., Vogel, B., Carrillo, C., Keating, A.F., Pritchard, S.K., Roslan, G., et al. (2021). Letrozole-induced polycystic ovar y syndrome attenuates cystathionine-β synthase mRNA and protein abundance in the ovaries of female Sprague Dawley rats. J Nutr. 151(6): 1407-1415. https://doi.org/10.1093/jn/nxab038 PMid:33758914 PMCid:PMC8169814 Search in Google Scholar

Mandalà, M. (2020). Inf luence of estrogens on uterine vascular adaptation in normal and preeclamptic pregnancies. Int J Mol Sci. 21(7): 2592. https://doi.org/10.3390/ijms21072592 PMid:32276444 PMCid:PMC7177259 Search in Google Scholar

Kuiper, G.G., Lemmen, J.G., Carlsson, B.O., Corton, J.C., Safe, S.H., Van Der Saag, P.T., van der Burg, B., Gustafsson, J.A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 139(10): 4252-4263. https://doi.org/10.1210/endo.139.10.6216 PMid:9751507 Search in Google Scholar

Sabnis, P.B., Gaitonde, B.B., Jetmalani M. (1968). Effects of alcoholic extracts of Asparagus racemosus on mammary glands of rats. Indian J Exp Biol. 6(1): 55-57. Search in Google Scholar

Payne, A.H., Hales, D.B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 25(6): 947-970. https://doi.org/10.1210/er.2003-0030 PMid:15583024 Search in Google Scholar

Sun, Y., Zhang, J., Ping, Z., Fan, L., Wang, C., Li, W., Lu, C., Zheng, L., Zhou, X. (2011). Expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) in normal and cystic follicles in sows. Afr J Biotechnol. 10(32): 6184-6189. Search in Google Scholar

Hu, J., Zhang, Z., Shen, W.J., Azhar, S. (2010). Cellular cholesterol deliver y, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 7, 47. https://doi.org/10.1186/1743-7075-7-47 PMid:20515451 PMCid:PMC2890697 Search in Google Scholar

Bednarska, S., Siejka, A. (2017). The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Adv Clin Exp Med. 26(2): 359-367. https://doi.org/10.17219/acem/59380 PMid:28791858 Search in Google Scholar

Dumesic, D.A., Akopians, A.L., Madrigal, V.K., Ramirez, E., Margolis, D.J., Sarma, M.K., Thomas, A.M., et al. (2016). Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J Clin Endocrinol Metab. 101(11): 4178-4188. https://doi.org/10.1210/jc.2016-2586 PMid:27571186 PMCid:PMC5095243 Search in Google Scholar

Zhang, Y., Liu, L., Yin, T.L., Yang, J., Xiong, C.L. (2017). Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 8(46): 80472-80480. https://doi.org/10.18632/oncotarget.19058 PMid:29113318 PMCid:PMC5655213 Search in Google Scholar

Zuo, T., Zhu, M., Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016, 8589318. https://doi.org/10.1155/2016/8589318 PMid:26770659 PMCid:PMC4684888 Search in Google Scholar

Younas, A., Hussain, L., Shabbir, A., Asif, M., Hussain, M., Manzoor, F. (2022). Effects of Fagonia indica on letrozole-induced polycystic ovarian syndrome (PCOS) in young adult female rats. Evid Based Complement Alternat Med. 2022, 1397060. https://doi.org/10.1155/2022/1397060 PMid:35664938 PMCid:PMC9162856 Search in Google Scholar

Sprache:
Englisch