Accès libre

Towards High-Precision Quadrotor Trajectory Following Capabilities: Modelling, Parameter Estimation, and LQR Control

À propos de cet article

Citez

Erdelj, M., Natalizio, E., Chowdhury, K. R., & Akyildiz, I. F. (2017). Help from the Sky: Leveraging UAVs for Disaster Management. IEEE Pervasive Comput., 16 (1), 24–32. DOI: 10.1109/MPRV.2017.11.Search in Google Scholar

Shaffer, R., Karpenko, M., & Gong, Q. (2016). Unscented guidance for waypoint navigation of a fixed-wing UAV. In Proc. Am. Control Conf., (pp. 473–478). July 2016. DOI: 10.1109/ACC.2016.7524959.Search in Google Scholar

Okyere, E., Bousbaine, A., Poyi, G. T., Joseph, A. K., & Andrade, J. M. (2019). LQR Controller Design for Quad‐Rotor Helicopters. J. Eng., 2019 (17), 4003–4007. DOI: 10.1049/joe.2018.8126.Search in Google Scholar

Guardeño, R., López, M. J., & Sánchez, V. M. (2019). MIMO PID Controller Tuning Method for Quadrotor Based on LQR/LQG Theory. Robotics, 8 (2), 15–21. DOI: 10.3390/ROBOTICS8020036.Search in Google Scholar

Priyambodo, T. K., Dhewa, O. A., & Susanto, T. (2019). Model of Linear Quadratic Regulator (LQR) Control System in Waypoint Flight Mission of Flying Wing UAV. J. Telecommun. Electron. Comput. Eng. (JTEC), 12 (4), 2289–8131. Available at https://jtec.utem.edu.my/jtec/article/view/5696.Search in Google Scholar

Shehzad, M. F., Bilal, A., & Ahmad, H. (2019). Position attitude control of an aerial robot (quadrotor) with intelligent PID and state feedback LQR controller: A comparative approach. In Proc. 2019 16th Int. Bhurban Conf. Appl. Sci. Technol. (IBCAST 2019), (pp. 340–346). 8–12 January 2019, Islamabad, Pakistan. DOI: 10.1109/IBCAST.2019.8667170.Search in Google Scholar

Saraf, P., Gupta, M., & Parimi, A. M. (2020). A comparative study between a classical and optimal controller for a quadrotor. In 2020 IEEE 17th India Counc. Int. Conf. (INDICON2020). 10–13 December 2020. New Delhi, India DOI: 10.1109/INDICON49873.2020.9342485.Search in Google Scholar

Islam, M., & Okasha, M. (2019). A comparative study of PD, LQR and MPC on quadrotor using quaternion approach. In 2019 7th Int. Conf. Mechatronics Eng. (ICOM 2019), (pp. 1–6). 30–31 October 2019, Putrajaya, Malaysia. DOI: 10.1109/ICOM47790.2019.8952046.Search in Google Scholar

Rinaldi, M., Primatesta, S., & Guglieri, G. (2023). A Comparative Study for Control of Quadrotor UAVs. Appl. Sci., 13 (6). DOI: 10.3390/app13063464.Search in Google Scholar

Shakeel, T., Arshad, J., Jaffery, M. H., Rehman, A. U., Eldin, E. T., Ghamry, N. A., & Shafiq, M. (2022). A Comparative Study of Control Methods for X3D Quadrotor Feedback Trajectory Control. Appl. Sci., 12 (18), 9254. DOI: 10.3390/app12189254.Search in Google Scholar

Abdulghany, A. R. (2017). Generalization of Parallel Axis Theorem for Rotational Inertia. Am. J. Phys., 85 (10), 791–795. DOI: 10.1119/1.4994835.Search in Google Scholar

Zhou, L., Pljonkin, A., & Singh, P. K. (2022). Modeling and PID Control of Quadrotor UAV Based on Machine Learning. J. Intell. Syst., 31 (1), 1112–1122. DOI: 10.1515/jisys-2021-0213.Search in Google Scholar

Kabir, A. M. (2019). Autonomous Control of a Quadrotor-Manipulator Application of Extended State Disturbance Observer. arXiv.Search in Google Scholar

Bouabdallah, S., Murrieri, P., & Siegwart, R. (2005). Towards Autonomous Indoor Micro VTOL. Auton. Robots, 18 (2), 171–183. DOI: 10.1007/s10514-005-0724-z.Search in Google Scholar

Padfield, G. D. (2007). Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling (2nd ed.). Oxford: Blackwell Publishing Ltd.Search in Google Scholar

Roskam, J. (2018). Airplane Flight Dynamics and Automatic Flight Controls: Part I (8th ed.). DARcorporation.Search in Google Scholar

Budiyono, A., & Wibowo, S. S. (2007). Optimal Tracking Controller Design for a Small Scale Helicopter. J. Bionic Eng., 4 (4), 271–280. DOI: 10.1016/S1672-6529(07)60041-9.Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics