[
Bastin, C., J.P. Benzécri, C. Bougarit, and P. Cazes. 1980. Pratique de l’Analyse des Donnees. Paris: Dunod.
]Search in Google Scholar
[
Beaumont, J.-F., and C. Bocci. 2008. “Another look at ridge calibration.” Metron 66(1): 5–20. Available at: https://www.dss.uniroma1.it/RePec/mtn/articoli/2008-1-1.pdf (accessed February 2022).
]Search in Google Scholar
[
Bellhouse, D.R. 1988. “A brief history of random sampling methods.” In Handbook of Statistics, edited by P.R. Krishnaiah and C.R. Rao, 6: 1–14, New York, Amsterdam. Elsevier/North-Holland. DOI: https://doi.org/10.1016/S0169-7161(88)06003-1.10.1016/S0169-7161(88)06003-1
]Search in Google Scholar
[
Benzécri, J.-P. 1973a. L’analyse des données: tome 1: La taxinomie. L’analyse des données. Paris: Bordas.
]Search in Google Scholar
[
Benzécri, J.-P. 1973b. L’analyse des données: tome 2: L’analyse des correspondances. L’analyse des données. Paris: Bordas.
]Search in Google Scholar
[
Bethlehem, J.G. 2009. The rise of survey sampling. The Hague: Statistics Netherlands. DOI: https://pure.uva.nl/ws/files/24636645/74286_312955.pdf (accessed February 2022).
]Search in Google Scholar
[
Boistard, H., G. Chauvet, and D. Haziza. 2016. “Doubly robust inference for the distribution function in the presence of missing survey data.” Scandinavian Journal of Statistics 43(3): 683–699. DOI: https://doi.org/10.1111/sjos.12198.10.1111/sjos.12198
]Search in Google Scholar
[
Borges, J. 2012. Inquisiciones –– Otras inquisiciones. Penguin Random House Grupo Editorial España.
]Search in Google Scholar
[
Box, G.E.P., and N.R. Draper. 2007. Response Surfaces, Mixtures, and Ridge Analyses 649. Hoboken: John Wiley & Sons. Available at: https://www.wiley.com/enus/Response+Surfaces%2C+Mixtures%2C+and+Ridge+Analyses%2C+2nd+Edition-p-9780470053577 (accessed February 2022).
]Search in Google Scholar
[
Breidt, F.J., and J.D. Opsomer. 2000. “Local polynomial regresssion estimators in survey sampling.” The Annals of Statistics 28(4): 1026–1053. DOI: https://doi.org/10.1214/aos/1015956706.10.1214/aos/1015956706
]Search in Google Scholar
[
Breidt, F.J., and J.D. Opsomer. 2017. “Model-assisted survey estimation with modern prediction techniques.” Statistical Science 32(2): 190–205. DOI: https://doi.org/10.1214/16-STS589.10.1214/16-STS589
]Search in Google Scholar
[
Brewer, K.R.W. 1963. “A model of systematic sampling with unequal probabilities.” Australian Journal of Statistics 5: 5–13. DOI: https://doi.org/10.1111/j.1467-842X.1963.tb00132.x.10.1111/j.1467-842X.1963.tb00132.x
]Search in Google Scholar
[
Brewer, K.R.W. 2013. “Three controversies in the history of survey sampling.” Survey Methodology 39(2): 249–262. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2013002/article/11883-eng.pdf (accessed February 2022).
]Search in Google Scholar
[
Brick, M.J. 2013. “Unit Nonresponse and Weighting Adjustments: A Critical Review.” Journal of Official Statistics 29(3): 329–353. DOI: https://doi.org/10.2478/jos-2013-0026.10.2478/jos-2013-0026
]Search in Google Scholar
[
Capel, R., Monod, D., and Müller, J.-P. 1996. “Essai sur le rôle des tests d’hypothèse en sciences humaines.” Actualités Pédagogiques 1: 1–51. Available at: http://moityca.-com/pdfs/Essai.pdf (accessed February 2022).
]Search in Google Scholar
[
Carfagna, E., and F.J. Gallego. 2005. “Using remote sensing for agricultural statistics.” International statistical review 73(3): 389–404. DOI: https://doi.org/10.1111/j.1751-5823.2005.tb00155.x.10.1111/j.1751-5823.2005.tb00155.x
]Search in Google Scholar
[
Cavallo, A., and R. Rigobon. 2016. “The billion prices project: Using online prices for measurement and research.” Journal of Economic Perspectives 30(2): 151–178. DOI: https://doi.org/10.1257/jep.30.2.151.10.1257/jep.30.2.151
]Search in Google Scholar
[
Chambers, R.L., and R.G. Clark. 2012. An Introduction to Model-Based Survey Sampling with Applications. Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198566625.001.0001.10.1093/acprof:oso/9780198566625.001.0001
]Search in Google Scholar
[
Chen, J.K.T., R.L. Valliant, and M.R. Elliott. 2019. “Calibrating nonprobability surveys to estimated control totals using LASSO, with an application to political polling.” Journal of the Royal Statistical Society 68(3): 657–681. DOI: https://doi.org/10.1111/rssc.12327.10.1111/rssc.12327
]Search in Google Scholar
[
Chen, S., and D. Haziza. 2017. “Multiply robust imputation procedures for the treatment of item nonresponse in surveys.” Biometrika 104(2): 439–453. DOI: https://doi.org/10.1093/biomet/asx007.10.1093/biomet/asx007
]Search in Google Scholar
[
Connelly, R., C.J. Playford, V. Gayle, and C. Dibben. 2016. “The role of administrative data in the big data revolution in social science research.” Social science research 59: 1–12. DOI: https://doi.org/10.1016/j.ssresearch.2016.04.015.10.1016/j.ssresearch.2016.04.01527480367
]Search in Google Scholar
[
Conseil d’éthique de la statistique. 2012. Charte de la statistique publique de la Suisse. Office fédéral de la statistique. Neuchâtel. Available at: https://www.conseilethiquestat.ch/fr/assets/File/charte/940-1400.pdf (accessed February 2022).
]Search in Google Scholar
[
Costantini, D., and M.C. Galavotti. 1986. “Induction and deduction in statistical analysis.” Erkenntnis 24: 73–94. DOI: https://doi.org/10.1007/BF00183203.10.1007/BF00183203
]Search in Google Scholar
[
Dagdoug, M., Goga, C., and D. Haziza. 2020a. Imputation procedures in surveys using nonparametric and machine learning methods: an empirical comparison. Available at: https://arxiv.org/abs/2007.06298 (accessed February 2022).10.1093/jssam/smab004
]Search in Google Scholar
[
Dagdoug, M., Goga, C., and D. Haziza. 2020b. Model-assisted estimation through random forests in finite population sampling. Available at: https://arxiv.org/abs/2002.09736 (accessed February 2022).
]Search in Google Scholar
[
Deming, W.E., and F.F. Stephan. 1940. “On a least square adjustment of sampled frequency table when the expected marginal totals are known.” Annals of Mathematical Statistics 11: 427–444. DOI: https://doi.org/10.1214/aoms/1177731829.10.1214/aoms/1177731829
]Search in Google Scholar
[
Devaud, D., and Y. Tillé. 2019a. “Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem.” TEST 4: 1033–1065. DOI: https://doi.org/10.1007/s11749-019-00681-3.10.1007/s11749-019-00681-3
]Search in Google Scholar
[
Devaud, D., and Y. Tillé. 2019b. “Rejoinder on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem.” TEST 28: 1087–1091. DOI: https://doi.org/10.1007/s11749-019-00681-3.10.1007/s11749-019-00681-3
]Search in Google Scholar
[
Deville, J.-C. 1979. Une bonne petite enquête vaut-elle mieux qu’un mauvais recensement? Document de travail – Institut national de la statistique et des études économiques. Insee.
]Search in Google Scholar
[
Deville, J.-C. 2000. “Generalized calibration and application to weighting for non-response.” In Compstat – Proceedings in Computational Statistics: 14th Symposium Held in Utrecht, The Netherlands 65–76. New York: Springer. DOI: https://doi.org/10.1007/978-3-642-57678-2_6.10.1007/978-3-642-57678-2_6
]Search in Google Scholar
[
Deville, J.-C., and C.-E. Särndal. 1992. “Calibration estimators in survey sampling.” Journal of the American Statistical Association 87: 376–382. DOI: https://doi.org/10.1080/01621459.1992.10475217.10.1080/01621459.1992.10475217
]Search in Google Scholar
[
Deville, J.-C., and Y. Tillé. 2004. “Efficient balanced sampling: The cube method.” Biometrika 91: 893–912. DOI: https://doi.org/10.1093/biomet/91.4.893.10.1093/biomet/91.4.893
]Search in Google Scholar
[
Dupont, F. 1994. “Calibration used as a nonresponse adjustment, studies in classification, data analysis, and knowledge organization.” In New Approaches in Classification and Data Analysis, edited by E. Diday: 539–548. Springer-Verlag.10.1007/978-3-642-51175-2_63
]Search in Google Scholar
[
Fisher, R.A. 1935. “The logic of inductive inference.” Journal of the royal statistical society 98(1): 39–82. Available at https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2397-2335.1935.tb04208.x (accessed February 2022).10.2307/2342435
]Search in Google Scholar
[
Fraser, D.A.S., and N. Reid. 2016. “Crisis in science? or crisis in statistics! mixed messages in statistics with impact on science.” Journal of Statistical Research 48(1): 1–9. Available at: http://www.utstat.utoronto.ca/reid/research/273-v8-nr.pdf (accessed February 2022).
]Search in Google Scholar
[
Fuller, W.A., M.M. Loughin, and H.D. Baker. 1994. “Regression weighting in the presence of nonresponse with application to the 1987-1988 nationwide food consumption survey.” Survey Methodology 20: 75–85. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1994001/article/14429-eng.pdf?st=uKDnj6Zz (accessed February 2022).
]Search in Google Scholar
[
Gallego, F.J. 2004. “Remote sensing and land cover area estimation.” International Journal of Remote Sensing 25(15): 3019–3047. DOI: https://doi.org/10.1080/01431160310001619607.10.1080/01431160310001619607
]Search in Google Scholar
[
Gallego, F.J., J. Delincé, and C. Rueda. 1993. “Crop area estimates through remote sensing: stability of the regression correction.” International Journal of Remote Sensing 14(18): 3433–3445. DOI: https://doi.org/10.1080/01431169308904456.10.1080/01431169308904456
]Search in Google Scholar
[
Gelman, A. 2011. “Induction and deduction in Bayesian data analysis.” Rationality, Markets and Morals 2(67–78): 1999. Available at: https://link.springer.com/article/10.1007/BF00183203 (accessed February 2022).
]Search in Google Scholar
[
Gelman, A., and E. Loken. 2014. “The statistical crisis in science: data-dependent analysis-a “garden of forking paths”-explains why many statistically significant comparisons don’t hold up.” American scientist 102(6): 460–466. DOI: https://doi.org/10.1511/2014.111.460.10.1511/2014.111.460
]Search in Google Scholar
[
Gini, C., and L. Galvani. 1929. “Di una applicazione del metodo rappresentativo al censimento italiano della popolazione (1. dicembre 1921).” Annali di Statistica, Series 4: 1–107.
]Search in Google Scholar
[
Goga, C., and M.A. Shehzad. 2014. “A note on partially penalized calibration.” Pakistan Journal of Statistics 30(4): 429–438.
]Search in Google Scholar
[
Guandalini, A., and Y. Tillé. 2017. “Design-based estimators calibrated on estimated totals from multiple surveys.” International Statistical Review 85: 250–269. DOI: https://doi.org/10.1111/insr.12160.10.1111/insr.12160
]Search in Google Scholar
[
Han, P., and L. Wang. 2013. “Estimation with missing data: beyond double robustness.” Biometrika 100(2): 417–430. DOI: https://doi.org/10.1093/biomet/ass087.10.1093/biomet/ass087
]Search in Google Scholar
[
Hansen, M.H. 1987. “Some history and reminiscences on survey sampling.” Statistical Science 2: 180–190. DOI: https://doi.org/10.1214/ss/1177013352.10.1214/ss/1177013352
]Search in Google Scholar
[
Hansen, M.H., and W.G. Madow. 1974. “Some important events in the historical development of sample survey.” In On the History of Statistics and Probability, edited by D.B. Owen: 75–102. New York: Marcel Dekker.
]Search in Google Scholar
[
Harford, T. 2014. “Big data: A big mistake” Significance 11(5): 14–19. DOI: https://doi.org/10.1111/j.1740-9713.2014.00778.x.10.1111/j.1740-9713.2014.00778.x
]Search in Google Scholar
[
Harman, G., and S. Kulkarni. 2012. Reliable Reasoning: Induction and Statistical Learning Theory. Cambridge, Massachusetts: MIT Press. Available at: https://mitpress.mit.edu/books/reliable-reasoning (accessed February 2022).
]Search in Google Scholar
[
Haziza, D., and É. Lesage. 2016. “A discussion of weighting procedures for Unit Nonresponse.” Journal of Official Statistics 32(1): 129–145. DOI: https://doi.org/10.1515/jos-2016-0006.10.1515/jos-2016-0006
]Search in Google Scholar
[
Ioannidis, J.P. 2005. “Why most published research findings are false.” PLoS medicine 2(8): e124. DOI: https://doi.org/10.1371/journal.pmed.0020124.10.1371/journal.pmed.0020124118232716060722
]Search in Google Scholar
[
Jensen, A. 1926. “Report on the representative method in statistics.” Bulletin of the International Statistical Institute 22: 359–380.
]Search in Google Scholar
[
Kang, J.D.Y., and J.L. Schafer. 2007. “Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data.” Statistical Science 22(4): 523–539. DOI: https://doi.org/10.1214/07-STS227.10.1214/07-STS227239755518516239
]Search in Google Scholar
[
Kerr, N.L. 1998. “Harking: Hypothesizing after the results are known.” Personality and Social Psychology Review 2(3): 196–217. DOI: https://doi.org/10.1207/s15327957pspr0203_4.10.1207/s15327957pspr0203_415647155
]Search in Google Scholar
[
Kiær, A.N. 1896. “Observations et expériences concernant des dénombrements représentatifs.” Bulletin de l’Institut International de Statistique 9: 176–183.
]Search in Google Scholar
[
Kiær, A.N. 1899. “Sur les méthodes représentatives ou typologiques appliquées à la statistique.” Bulletin de l’Institut International de Statistique 11: 180–185.
]Search in Google Scholar
[
Kiær, A.N. 1903. “Sur les méthodes représentatives ou typologiques.” Bulletin de l’Institut International de Statistique 13: 66–78.
]Search in Google Scholar
[
Kiær, A.N. 1905. “Discours sans intitulé sur la méthode représentative.” Bulletin de l’Institut International de Statistique 14: 119–134.
]Search in Google Scholar
[
Kim, J.K., and D. Haziza. 2014. “Doubly robust inference with missing data in survey sampling.” Statistica Sinica 24(1): 375–394. DOI: https://doi.org/10.5705/ss.2012.005.10.5705/ss.2012.005
]Search in Google Scholar
[
Kott, P.S. 2006. “Using calibration weighting to adjust for nonresponse and coverage errors.” Survey Methodology 32: 133–142. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9547-eng.pdf?st=63fu-3Bc (accessed February 2022).
]Search in Google Scholar
[
Kruskal, W., and F. Mosteller. 1980. “Representative sampling, IV: The history of the concept in statistics, 1895–1939.” International Statistical Review 48: 169–195. DOI: https://doi.org/10.2307/140315.10.2307/140315
]Search in Google Scholar
[
Kussul, N., Lemoine, G., F.J. Gallego, S.V. Skakun, M. Lavreniuk, and A.Y. Shelestov. 2016. “Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1a data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6): 2500–2508. DOI: https://doi.org/10.1109/JSTARS.2016.2560141.10.1109/JSTARS.2016.2560141
]Search in Google Scholar
[
Lehmann, E.L. 1993. “The Fisher, Neyman-Pearson theories of testing hypotheses: one theory or two?” Journal of the American Statistical Association 88(424): 1242–1249. DOI: https://doi.org/10.1080/01621459.1993.10476404.10.1080/01621459.1993.10476404
]Search in Google Scholar
[
Lundström, S., and C.-E. Särndal. 1999. “Calibration as a Standard Method for Treatment of Nonresponse.” Journal of Official Statistics 15: 305–327. Available at: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/calibration-as-a-standard-method-for-treatment-of-nonresponse.pdf (accessed March 2022).
]Search in Google Scholar
[
Mayor-Gallego, J., J. Moreno-Rebollo, and M. Jimenez-Gamero. 2019. “Estimation of the finite population distribution function using a global penalized calibration method.” AStA Advances in Statistical Analysis 103(1): 1–35. DOI: https://doi.org/10.1007/s10182-018-0321-z.10.1007/s10182-018-0321-z
]Search in Google Scholar
[
McConville, K.S., F.J. Breidt, T.C.M. Lee, and G.G. Moisen. 2017. “Model-assisted survey regression estimation with the lasso.” Journal of Survey Statistics and Methodology 5(2): 131–158. DOI: https://doi.org/10.1093/jssam/smw041.10.1093/jssam/smw041
]Search in Google Scholar
[
Molina, I., and E. Strzalkowska-Kominiak. 2020. “Estimation of proportions in small areas: application to the labour force using the swiss census structural survey.” Journal of the Royal Statistical Society A183(1): 281–310. DOI: https://doi.org/10.1111/rssa.12498.10.1111/rssa.12498
]Search in Google Scholar
[
Neyman, J. 1934. “On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection.” Journal of the Royal Statistical Society 97: 558–606. DOI: https://doi.org/10.2307/2342192.10.2307/2342192
]Search in Google Scholar
[
Neyman, J. 1938. “Contribution to the theory of sampling human population.” Journal of the American Statistical Association 33: 101–116. Available at: https://doi.org/10.1080/01621459.1938.10503378.10.1080/01621459.1938.10503378
]Search in Google Scholar
[
Neyman, J. 1952. “Lectures and Conferences on Mathematical Statistics and Probability.” Graduate School, U.S. Department of Agriculture, Washington. DOI: https://doi.org/10.1038/142274a0.10.1038/142274a0
]Search in Google Scholar
[
Neyman, J. 1957. “Inductive Behavior” as a basic concept of philosophy of science.” Revue de l’Institut International de Statistique 25: 7–22. DOI: https://doi.org/10.2307/1401671.10.2307/1401671
]Search in Google Scholar
[
Popper, K. 2005. The logic of scientific discovery. London: Routledge.10.4324/9780203994627
]Search in Google Scholar
[
Quetelet, A. 1846. Lettres à S.A.R. le Duc régnant de Saxe-Cobourg et Gotha, sur la théorie des probabilités appliquées aux sciences morales et politiques. Bruxelles: M. Hayez.
]Search in Google Scholar
[
Rao, J.N.K., and I. Molina. 2015. Small Area Estimation. New York: Wiley. Available at: https://www.wiley.com/en-us/Small+Area+Estimation%2C+2nd+Edition-p-9781118735787 (accessed February 2022).10.1002/9781118735855
]Search in Google Scholar
[
Royall, R.M. 1970. “On finite population sampling theory under certain linear regression models.” Biometrika 57: 377–387. DOI: https://doi.org/10.1093/biomet/57.2.377.10.1093/biomet/57.2.377
]Search in Google Scholar
[
Royall, R.M. 1971. “Linear regression models in finite population sampling theory.” In Foundations of Statistical Inference, edited by V.P. Godambe and D.A. Sprott: 259–279. Toronto, Montreal: Holt, Rinehart et Winston.
]Search in Google Scholar
[
Royall, R.M. 1976. “The linear least squares prediction approach to two-stage sampling.” Journal of the American Statistical Association 71: 657–664. DOI: https://doi.org/10.1080/01621459.1976.10481542.10.1080/01621459.1976.10481542
]Search in Google Scholar
[
Särndal, C.-E. 2007. “The calibration approach un survey theory and practice.” Survey Methodology 33: 99–119. Available at: https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200700210488 (accessed February 2022).
]Search in Google Scholar
[
Särndal, C.-E., and S. Lundström. 2005. Estimation in Surveys with Nonresponse. New York: Wiley. Available at: https://onlinelibrary.wiley.com/doi/book/10.1002/0470011351 (accessed February 2022).
]Search in Google Scholar
[
Särndal, C.-E., B. Swensson, and J.H. Wretman. 1992. Model Assisted Survey Sampling. New York: Springer. Available at: https://link.springer.com/book/9780387406206 (accessed February 2022).10.1007/978-1-4612-4378-6
]Search in Google Scholar
[
Statistics Canada. 2017. Statistics Canada’s Quality Assurance Framework. Documentation of the internet site of Statistics Canada. Statistics Canada, Ottawa. Available at: https://www150.statcan.gc.ca/n1/en/catalogue/12-586-X (accessed February 2022).
]Search in Google Scholar
[
Tan, Z. 2020. “Regularized calibrated estimation of propensity scores with model misspecification and high-dimensional data.” Biometrika 107(1): 137–158. Available at: https://doi.org/10.1093/biomet/asz059.10.1093/biomet/asz059
]Search in Google Scholar
[
Taylor, J., Sannier, C., J. Delincé, and F.J. Gallego. 1997. Regional crop inventories in Europe assisted by remote sensing. Synthesis Report, Office for Publications of the European Commission. Available at: https://op.europa.eu/en/publication-detail/-/publication/dbec0d28-e918-452d-a70b-6706946ae935 (accessed February 2022).
]Search in Google Scholar
[
Ten Bosch, O., D. Windmeijer, A. van Delden, G. van den Heuvel G. 2018. “Web scraping meets survey design: Combining forces.” In Big Data Meets Survey Science Conference, October 25–27, Barcelona, Spain. Available at: https://www.european-surveyresearch.org/bigsurv18/uploads/73/61/20180820_BigSurv_WebscrapingMeets-SurveyDesign.pdf (accessed February 2022).
]Search in Google Scholar
[
Tibshirani, R.J. 1996. “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society 58(1): 267–288. Available at: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.10.1111/j.2517-6161.1996.tb02080.x
]Search in Google Scholar
[
Tibshirani, R.J. 2011. “Regression shrinkage and selection via the lasso: a retrospective.” Journal of the Royal Statistical Society B73(3): 273–282. DOI: https://doi.org/10.1111/j.1467-9868.2011.00771.x.10.1111/j.1467-9868.2011.00771.x
]Search in Google Scholar
[
Tillé, Y. 2020. Sampling and Estimation From Finite Populations. Hoboken: Wiley. Available at: https://www.wiley.com/en-us/Sampling+and+Estimation+from+Finite+Populations-p-9780470682050 (accessed February 2022).10.1002/9781119071259
]Search in Google Scholar
[
Tukey, J.W. 1977. Exploratory Data Analysis, volume 2. Reading, MA: Addison-Wesley.
]Search in Google Scholar
[
U.S. Bureau of Labor Statistics. 2021. Consumer price index. Available at: https://www.bls.gov/cpi/factsheets/airline-fares.htm (accessed February 2022).
]Search in Google Scholar
[
Valliant, R., Dever, J.A., and F. Kreuter. 2013. Practical Tools for Designing and Weighting Survey Samples. New York: Springer. Available at: https://link.springer.-com/book/10.1007/978-1-4614-6449-5 (accessed February 2022).10.1007/978-1-4614-6449-5
]Search in Google Scholar
[
Valliant, R., A.H. Dorfman, and R.M. Royall. 2000. Finite Population Sampling and Inference: A Prediction Approach. New York: Wiley. Available at: https://www.wiley.com/enus/Finite+Population+Sampling+and+Inference%3A+A+Prediction+Approach-p-9780471293415 (accessed February 2022).
]Search in Google Scholar
[
Wasserstein, R.L., and N.A. Lazar. 2016. “The ASA statement on p-values: Context, process, and purpose.” The American Statistician 70(2): 129–133. DOI: https://doi.org/10.1080/00031305.2016.1154108.10.1080/00031305.2016.1154108
]Search in Google Scholar
[
Wikipedia contributors. 2020. “Martha Farnsworth Riche – Wikipedia, the free encyclopedia.” Available at: https://en.wikipedia.org/wiki/Martha_Farnsworth_Riche (accessed February 2022).
]Search in Google Scholar
[
Yang, S., and J.K. Kim. 2020. “Statistical data integration in survey sampling: A review.” Japanese Journal of Statistics and Data Science 3: 625–650. DOI: https://doi.org/10.1007/s42081-020-00093-w.10.1007/s42081-020-00093-w
]Search in Google Scholar