1. bookVolume 70 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Field-scale assessment of the unsaturated hydraulic properties of residual soils in southeastern Brazil

Publié en ligne: 19 May 2022
Volume & Edition: Volume 70 (2022) - Edition 2 (June 2022)
Pages: 244 - 256
Reçu: 29 Mar 2022
Accepté: 25 Apr 2022
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Abstract

Field tests were carried out to estimate effective unsaturated soil hydraulic properties of layered residual soils in Rio de Janeiro, southeastern Brazil. Data of this type are important for understanding the initiation of rainstorm-induced soil landslides, which often occur in the state of Rio de Janeiro as well as other areas having similar geologic settings and climate conditions. Tests were carried out using a simplified field approach, referred to as the Monitored Infiltration Test, which requires only a tensiometer to measure pressure heads below the wetting front, triggered by flow from a Mariotte bottle which maintains a constant pressure at the top edge of the soil profile. The data can then be analyzed by numerical inversion using the HYDRUS-2D software package. The test is relatively fast since no steady-state flow conditions are needed, and versatile since the test can be carried out quickly on steep slopes with the help of a manual auger. Soil water retention and the unsaturated hydraulic conductivity functions were obtained for a range of young, mature and saprolitic residual soils. The effective hydraulic properties of the distinct residual soil layers can be quite large, reflecting a need to provide a careful analysis of field-scale hydraulic heterogeneity in geotechnical analyses.

Keywords

ABNT, 2016a. Soil - granulometric analysis: procedure. NBR 7181. Brazilian Association of Technical Standards. Search in Google Scholar

ABNT, 2016b. Soil - preparation for compaction and characterization tests. NBR 6457. Brazilian Association of Technical Standards. Search in Google Scholar

ASTM, 2013. Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM D5298-10. Am. Soc. Testing and Materials. DOI: 10.1520/D5298-1010.1520/D5298-10 Search in Google Scholar

ASTM, 2016. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM D5084-16a. Am. Soc. for Testing and Materials. DOI: 10.1520/D5084-16A10.1520/D5084-16A Search in Google Scholar

Aydin, A., 2006. Stability of saprolitic slopes: nature and role of field scale heterogeneities. Natural Hazards and Earth System Sci., 6, 89–96. DOI: 10.5194/nhess-6-89-200610.5194/nhess-6-89-2006 Search in Google Scholar

Bells, F. (Ed.), 2005. Engineering Geology, Problematic Soils. Elsevier. DOI: 10.1016/B0-12-369396-9/00221-510.1016/B0-12-369396-9/00221-5 Search in Google Scholar

Buback, J., 2008. Caracterização físico-química-minerológica e micromorfolóogica de um perfil de alteraçao de rocha alcalina do Rio de Janeiro [Residual soil alkaline origin characterization at the Tangá city, Rio de Janeiro]. MS Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil. Search in Google Scholar

Camargo, J., Velloso, R., Vargas, E., 2016. Numerical limit analysis of three- dimensional slope stability problems at catchment scale. Acta Geotechnica, 11, 1369–1383. DOI: 10.1007/s11440-016-0459-310.1007/s11440-016-0459-3 Search in Google Scholar

Carvalho, T., 2012. Desenvolvimento de um sistema de medição de variação de volume total de amostras triaxiais não-saturadas e avaliação do efeito de processos de saturação no comportamento de solos saprolíticos [Development of a total volume change measuring system for unsaturated triaxial samples and evaluation of the effect of saturation procedures on the behaviour of saprolitic soils]. PhD Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil. Search in Google Scholar

Chen, P., Wei, C., Yi, P., Ma, T., 2017. Determination of hydraulic properties of unsaturated soils based on nonequilibrium multistep outflow experiments. J. Geotechn. Geoenviron. Eng., 143, 1, Article Number: 04016087. DOI: 10.1061/(ASCE)GT.1943-5606.000159810.1061/(ASCE)GT.1943-5606.0001598 Search in Google Scholar

Fernandes, N.F., Guimarães, R.F., Gomes, R.A.T., Vieira, B.C., Montgomery, D.R., Greenberg, H., 2004. Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena, 55, 163–181. DOI: 10.1016/S0341-8162(03)00115-210.1016/S0341-8162(03)00115-2 Search in Google Scholar

Gerscovich, D.M.S., Vargas Jr., E.A, de Campos, T.M.P., 2006. On the evaluation of unsaturated flow in a natural slope in Rio de Janeiro, Brazil. Eng. Geol., 88, 23–40. DOI: 10.1016/j.enggeo.2006.07.00810.1016/j.enggeo.2006.07.008 Search in Google Scholar

Gomes, G.J.C., Vrugt, J.A., Vargas Jr., E.A., 2016. Toward improved prediction of the bedrock depth underneath hillslopes: Bayesian inference of the bottom- up control hypothesis using high-resolution topographic data. Water Re-sour. Res., 52, 3085–3112. DOI: 10.1002/2015WR01814710.1002/2015WR018147 Search in Google Scholar

Gomes, G.J.C., Vrugt, J.A, Vargas Jr., E.A., Camargo, J.T., Velloso, R.Q., van Genuchten, M.T., 2017. The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope. Computers & Geotechnics, 88, 222–241. DOI: 10.1016/j.compgeo.2017.03.01610.1016/j.compgeo.2017.03.016 Search in Google Scholar

Gomes, R.A.T, Guimarães, R.F., Carvalho, O.A., Fernandes, N.F., Vargas Jr., E.A., Martins, E.S., 2008. Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Natural Hazards, 45, 197–209. DOI: 10.1007/s11069-007-9160-z10.1007/s11069-007-9160-z Search in Google Scholar

Gonçalves, R.D., Teramoto, E.H, Engelbrencht, B.Z., Soto, M.A.A., Chang, H.K., van Genuchten, M.T., 2019. Quasi-saturated layer: Implications for estimating recharge and groundwater modeling. Groundwater, 58, 432–440. DOI: 10. 1111/gwat.1291610.1111/gwat.12916731815931187874 Search in Google Scholar

Inoue, M., Šimůnek, J., Hopmans, J.W., Clausnitzer, V., 1998. In situ estimation of soil hydraulic functions using a multi-step soil-water extraction technique. Water Resour. Res., 34, 1035–1050. DOI: 10.1029/98WR0029510.1029/98WR00295 Search in Google Scholar

Kassim, A., Gofar, N., Lee, L.M., Rahardjo, H., 2012. Modeling of suction distribution in an unsaturated heterogeneous residual slope. Eng. Geol., 131–132, 70–82. DOI: 10.1016/j.enggeo.2012.02.00510.1016/j.enggeo.2012.02.005 Search in Google Scholar

Lacerda, W., 2010. Shear strength of soils derived from the weathering of granite and gneiss in Brazil. Geological Society, London, Eng. Geol. Special Publications 3, 167–182. DOI: 10.1144/EGSP23.1010.1144/EGSP23.10 Search in Google Scholar

Li, W.C., Dai, F.C., Wei, Y.Q., Wang, M.L., Min, H., Lee, L.M., 2016. Implication of subsurface flow on rainfall-induced landslide: a case study. Landslides, 13, 1109–1123. DOI: 10.1007/s10346-015-0619-910.1007/s10346-015-0619-9 Search in Google Scholar

Liang, W.L., Uchida, T., 2014. Effects of topography and soil depth on saturated-zone dynamics in steep hillslopes explored using the three-dimensional Richards’ equation. J. Hydrol., 510, 124–136. DOI: 10.1016/j.jhydrol.2013.12.02910.1016/j.jhydrol.2013.12.029 Search in Google Scholar

Maciel, I., 1991. Aspectos Microestruturais e Propriedades Geomecánicas de um Perfil de Solo Residual de Gnaisse Facoidal [Micro-structural aspects and geomechanical properties of a residual soil profile]. Master’s thesis. Pontifical Catholic University of Rio de Janeiro, Brazil. Search in Google Scholar

Oliveira, C., 2013. Avaliação de mecanismos de ruptura associados aos escorregamentos da Prainha e Condomínio em Nova Friburgo, Rio de Janeiro [Assessment of failure mechanisms of the Prainha and Condomínio landslides, in Nova Friburgo, Rio de Janeiro]. Master’s Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil. Search in Google Scholar

Peranić, J., Arbanas, Z., Cuomo, S., Maček, M., 2018. Soil-water characteristic curve of residual soil from a flysch rock mass. Geofluids. DOI: 10.1155/2018/629781910.1155/2018/6297819 Search in Google Scholar

Peranić, J., Moscariello, M., Cuomo, S., Arbanas, Z., 2020. Hydro-mechanical properties of unsaturated residual soil from a flysch rock mass. Eng. Geol., 269, Article Number: 105546. DOI: 10.1016/j.enggeo.2020.10554610.1016/j.enggeo.2020.105546 Search in Google Scholar

Peters, A., Iden, S.C., Durner, W., 2015. Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. J. Hydrol., 527, 531–542. DOI: 10.1016/j.jhydrol. 2015.05.020 Search in Google Scholar

Rahardjo, H., Satyanaga, A., 2019. Sensing and monitoring for assessment of rainfall-induced slope failures in residual soil. Proc. Inst. Civil Eng., Geotechnical Engineering 176, 496–506. DOI: 10.1680/jgeen.18.0020810.1680/jgeen.18.00208 Search in Google Scholar

Reynolds, W.D., Elrick, D.E., 1986. A method for simultaneous in situ measurement in the vadose zone of field-saturated hydraulic conductivity, sorptivity and the conductivity-pressure head relationship. Ground Water Monitoring & Remediation, 6, 84–95. DOI: 10.1111/j.1745-6592.1986.tb01229.x10.1111/j.1745-6592.1986.tb01229.x Search in Google Scholar

Rosi, A., Canavesi, V., Segoni, S., Nery, T.D., Catani, F., Casagli., N., 2019. Landslides in the mountain region of Rio de Janeiro: A proposal for the semi-automated definition of multiple rainfall thresholds. Geosci., 9, 5, Article Number: 203. DOI: 10.3390/geosciences905020310.3390/geosciences9050203 Search in Google Scholar

Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163–176. DOI: 10.1016/S0022-1694(01)00466-810.1016/S0022-1694(01)00466-8 Search in Google Scholar

Scharnagl, B., Vrugt, J.A., Vereecken, H., Herbst, M., 2011. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol. Earth Syst. Sci., 15, 3043–3059. DOI: 10.5194/hess-15-3043-201110.5194/hess-15-3043-2011 Search in Google Scholar

Šimůnek, J.J., van Genuchten, M.T., 1996. Estimating unsatu-rated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683–2696. DOI: 10.1029/96WR0152510.1029/96WR01525 Search in Google Scholar

Šimůnek, J.J., van Genuchten, M.T., Gribbs, M.M., Hopmans., J.W., 1998. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res., 47, 27–37. DOI: 10.1016/S0167-1987(98) 00069-5 Search in Google Scholar

Šimůnek, J., Kodešová, R., Gribb, M.M., van Genuchten., M.T., 1999. Estimating hysteresis in the soil water retention function from cone permeameter experiments. Water Resour. Res., 35, 1329–1345. DOI:10.1029/1998WR90011010.1029/1998WR900110 Search in Google Scholar

Šimůnek, J., van Genuchten, M.T., Šejna, M., 2012. Hydrus: Model use, calibration and validation. Trans. ASABE, 55, 1261–1274. DOI: 10.13031/2013.4223910.13031/2013.42239 Search in Google Scholar

Šimůnek, J.J., van Genuchten, M.T., Šejna, M., 2016. Recent developments and applications of the Hydrus computer software packages. Vadose Zone J., 15, 1–25. DOI: 10.2136/vzj2016.04.003310.2136/vzj2016.04.0033 Search in Google Scholar

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x.10.2136/sssaj1980.03615995004400050002x Search in Google Scholar

Velloso, R.Q., 2000. Estudo Numérico da Estimativa de Parâmetros Hidráulicos em Solos Não Saturados [Numerical Study of the Estimation of Hydraulic Parameters in Partially Saturated Soils]. Master’s Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil. Search in Google Scholar

Vieira, B.C., Fernandes, N.F., 2004. Landslides in Rio de Janeiro: The role played by variations in soil hydraulic conductivity. Hydrol. Proc., 18, 791–805. DOI: 10.1002/hyp.136310.1002/hyp.1363 Search in Google Scholar

Vrugt, J.A., van Wijk, M.T., Hopmans, J.W., Šimůnek, J.J., 2001. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour. Res., 37, 2457–2470. DOI: 10.1029/2000WR00002710.1029/2000WR000027 Search in Google Scholar

Vrugt, J.A., Schoups, G., Hopmans, J.W., C. Young, W.W., Harter, T., Bouten, W., 2004. Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization. Water Resour. Res., 40, 6. DOI: 10.1029/2003WR00270610.1029/2003WR002706 Search in Google Scholar

Vrugt, J.A, Stauffer, P.H., Wöhling, T., Robinson, B.A., Vesselinov, V.V., 2008. Inverse modeling of subsurface flow and transport properties: A review with new developments. Vadose Zone J., 7, 843–864. DOI: 10.2136/vzj2007. 0078 Search in Google Scholar

Xia, J., Cai, C., Wei, Y., Wu, X., 2019. Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion. Catena, 174, 469–477. DOI: 10.1016/j.catena.2018.11.01510.1016/j.catena.2018.11.015 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo