1. bookVolume 70 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Estimation of hydrodynamic properties of a sandy-loam soil by two analysis methods of single-ring infiltration data

Publié en ligne: 19 May 2022
Volume & Edition: Volume 70 (2022) - Edition 2 (June 2022)
Pages: 234 - 243
Reçu: 30 Aug 2021
Accepté: 03 Jan 2022
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Abstract

Beerkan infiltration runs could provide an incomplete description of infiltration with reference to either the near steady-state or the transient stages. In particular, the process could still be in the transient stage at the end of the run or some transient infiltration data might be loss. The Wu1 method and the BEST-steady algorithm can be applied to derive soil hydrodynamic parameters even under these circumstances. Therefore, a soil dataset could be developed using two different data analysis methods. The hypothesis that the Wu1 method and BEST-steady yield similar predictions of the soil parameters when they are applied to the same infiltration curve was tested in this investigation. For a sandy-loam soil, BEST-steady yielded higher saturated soil hydraulic conductivity, Ks, microscopic pore radius, λm, and depth of the wetting front at the end of the run, dwf, and lower macroscopic capillary length, λc, as compared with the Wu1 method. Two corresponding means differed by 1.2–1.4 times, depending on the variable, and the differences appeared overall from moderate to relatively appreciable, that is neither too high nor negligible in any circumstance, according to some literature suggestions. Two estimates of Ks were similar (difference by < 25%) when the gravity-driven vertical flow and the lateral capillary components represented the 71–89% of total infiltration. In conclusion, the two methods of data analysis do not generally yield the same predictions of soil hydrodynamic parameters when they are applied to the same infiltration curve. However, it seems possible to establish what are the conditions making the two methods similar.

Keywords

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatere, L., 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing, Cham, 383 p.10.1007/978-3-319-31788-5 Search in Google Scholar

Bagarello, V., Giordano, G., 1999. Comparison of procedures to estimate steady flow rate in field measurement of saturated hydraulic conductivity with the Guelph permeameter method. J. Agr. Eng. Res., 74, 63–71.10.1006/jaer.1999.0437 Search in Google Scholar

Bagarello, V., David, S.M., 2020. Run duration effects on the hydrodynamic properties of a loam soil estimated by steady-state infiltration methods. J. Agric. Eng., LI:1075, 229–238. DOI: 10.4081/jae.2020.107510.4081/jae.2020.1075 Search in Google Scholar

Bagarello, V., Di Prima, S., Iovino, M., 2014. Comparing alternative algorithms to analyze the beerkan infiltration experiment. Soil Sci. Soc. Am. J., 78, 724–736. DOI: 10.2136/sssaj2013.06.023110.2136/sssaj2013.06.0231 Search in Google Scholar

Bagarello, V., Baiamonte, G., Caia, C., 2019a. Variability of near-surface saturated hydraulic conductivity for the clay soils of a small Sicilian basin. Geoderma, 340, 133–145. DOI: 10.1016/j.geoderma.2019.01.00810.1016/j.geoderma.2019.01.008 Search in Google Scholar

Bagarello, V., Iovino, M., Lai, J., 2019b. Accuracy of saturated soil hydraulic conductivity estimated from numerically simulated single-ring infiltrations. Vadose Zone J., 18, 180122. DOI: 10.2136/vzj2018.06.012210.2136/vzj2018.06.0122 Search in Google Scholar

Bagarello, V., Caltabellotta, G., Iovino, M., 2021. Water transmission properties of a sandy-loam soil estimated with Beerkan runs differing by the infiltration time criterion. J. Hydrol. Hydromech., 69, 2, 151–160. DOI: 10.2478/johh-2021-001010.2478/johh-2021-0010 Search in Google Scholar

Braud, I., Desprats, J.F., Ayral, P.A., Bouvier, C., Vandervaere, J.P., 2017. Mapping topsoil field-saturated hydraulic conductivity from point measurements using different methods. J. Hydrol. Hydromech., 65, 3, 264–275. DOI: 10.1515/johh-2017-001710.1515/johh-2017-0017 Search in Google Scholar

Brooks, R.H., Corey, C.T., 1964. Hydraulic properties of porous media. Hydrol. Paper 3, Colorado State University, Fort Collins. Search in Google Scholar

Caltabellotta, G., Bagarello, V., Iovino, M., 2021. Effect of a heavy rainstorm on the surface hydrodynamic properties of a sandy-loam soil. Submitted for possible publication on J. Hydrol. Eng.10.1061/(ASCE)HE.1943-5584.0002179 Search in Google Scholar

Ciollaro, G., Lamaddalena, N., 1998. Effect of tillage on the hydraulic properties of a Vertic soil. J. Agr. Eng. Res., 71, 147–155.10.1006/jaer.1998.0312 Search in Google Scholar

Di Prima, S., Stewart, R.D., Castellini, M., Bagarello, V., Abou Najm, M.R., Pirastru, M., Giadrossich, F., Iovino, M., Angulo-Jaramillo, R., Lassabatere, L., 2020. Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. J. Hydrol., 589, 125159. DOI: 10.1016/j.jhydrol.2020.12515910.1016/j.jhydrol.2020.125159 Search in Google Scholar

Elrick, D.E., Reynolds, W.D., 1992a. Infiltration from constant-head well permeameters and infiltrometers. In: Topp, C.G. et al. (Ed.): Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice. SSSA Special Publication 30. SSSA, Madison, WI, pp. 1–24.10.2136/sssaspecpub30.c1 Search in Google Scholar

Elrick, D.E., Reynolds, W.D., 1992b. Methods for analyzing constant-head well permeameter data. Soil Sci. Soc. Am. J., 56, 320–323.10.2136/sssaj1992.03615995005600010052x Search in Google Scholar

Gee, G.W., Bauder, J.W., 1986. Particle-size Analysis. In: SSSA Book Series, Soil Science Society of America, American Society of Agronomy, pp. 383–411.10.2136/sssabookser5.1.2ed.c15 Search in Google Scholar

Gonzalez-Sosa, E., Braud, I., Dehotin, J., Lassabatère, L., Angulo-Jaramillo, R., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S., Michel, M., 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrol. Process., 24, 2382–2399.10.1002/hyp.7640 Search in Google Scholar

Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res., 30, 11, 2931–2935.10.1029/94WR01788 Search in Google Scholar

Horton, R.E., 1940. An approach towards a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. Proc., 5, 399–417.10.2136/sssaj1941.036159950005000C0075x Search in Google Scholar

Iovino, M., Castellini, M., Bagarello, V., Giordano, G., 2016. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Land Degrad., Dev., 27, 200–210. DOI: 10.1002/ldr.226310.1002/ldr.2263 Search in Google Scholar

Iovino, M., Angulo-Jaramillo, R., Bagarello, V., Gerke, H.H., Jabro, J., Lassabatere, L., 2017. Thematic issue on soil water infiltration. J. Hydrol. Hydromech., 65, 3, 205–208. DOI: 10.1515/johh-2017-003610.1515/johh-2017-0036 Search in Google Scholar

Jabro, J.D., 1996. Variability of field-saturated hydraulic conductivity in a Hagerstown soil as affected by initial water content. Soil Sci., 161, 11, 735–739.10.1097/00010694-199611000-00002 Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments – BEST. Soil Sci. Soc. Am. J., 70, 521–532. DOI: 10.2136/sssaj2005.002610.2136/sssaj2005.0026 Search in Google Scholar

Lassabatere, L., Di Prima, S., Angulo-Jaramillo, R., Keesstra, S., Salesa, D., 2019. Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrolog. Sci. J., 64, 2, 165–178. DOI: 10.1080/02626667.2018.156044810.1080/02626667.2018.1560448 Search in Google Scholar

Lee, D.M., Reynolds, W.D., Elrick, D.E., Clothier, B.E., 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Canadian J. Soil Sci., 65, 563–573.10.4141/cjss85-060 Search in Google Scholar

Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc., 62, 318, 399–402. DOI: 10.1080/01621459.1967.1048291610.1080/01621459.1967.10482916 Search in Google Scholar

Minasny, B., McBratney, A.B., 2007. Estimating the water retention shape parameter from sand and clay content. Soil Sci. Soc. Am. J., 71, 1105–1110.10.2136/sssaj2006.0298N Search in Google Scholar

Mubarak, I., Mailhol, J.C., Angulo-Jaramillo, R., Ruelle, P., Boivin, P., Khaledian, M., 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, 150, 1–2, 158–165. DOI: 10.1016/j.geoderma.2009.01.02210.1016/j.geoderma.2009.01.022 Search in Google Scholar

Mubarak, I., Angulo-Jaramillo, R., Mailhol, J.C., Ruelle, P., Khaledian, M., Vauclin, M., 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agr. Water Manage., 97, 1517–1526.10.1016/j.agwat.2010.05.005 Search in Google Scholar

Reynolds, W.D., 2013. An assessment of borehole infiltration analyses for measuring field-saturated hydraulic conductivity in the vadose zone. Eng. Geol., 159, 119–130.10.1016/j.enggeo.2013.02.006 Search in Google Scholar

Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J., 54, 1233–1241.10.2136/sssaj1990.03615995005400050006x Search in Google Scholar

Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J., 64, 478–484.10.2136/sssaj2000.642478x Search in Google Scholar

Souza, E.S., Antonino, A.C.D., Heck, R.J., Montenegro, S.M.G.L., Lima, J.R.S., Sampaio, E.V.S.B., Angulo-Jaramillo, R., Vauclin, M., 2014. Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil. Soil Till. Res., 141, 55–61.10.1016/j.still.2014.04.004 Search in Google Scholar

Stewart, R.D., Abou Najm, M.R., 2018a. A comprehensive model for single ring infiltration. I: Initial water content and soil hydraulic properties. Soil Sci. Soc. Am. J., 82, 3, 548–557.10.2136/sssaj2017.09.0313 Search in Google Scholar

Stewart, R.D., Abou Najm, M.R., 2018b. A comprehensive model for single ring infiltration. II: Estimating field-saturated hydraulic conductivity. Soil Sci. Soc. Am. J., 82, 3, 558–567.10.2136/sssaj2017.09.0314 Search in Google Scholar

Vandervaere, J.-P., Vauclin, M., Elrick, D.E., 2000. Transient flow from tension infiltrometers: II. Four methods to determine sorptivity and conductivity. Soil Sci. Soc. Am. J., 64, 1272–1284.10.2136/sssaj2000.6441272x Search in Google Scholar

Verbist, K., Baetens, J., Cornelis, W.M., Gabriels, D., Torres, C., Soto, G., 2009. Hydraulic conductivity as influenced by stoniness in degraded drylands of Chile. Soil Sci. Soc. Am. J., 73, 471–484.10.2136/sssaj2008.0066 Search in Google Scholar

Warrick, A.W., 1998. Appendix 1: Spatial variability. In: Hillel, D. (Ed.): Environmental Soil Physics. Academic Press, San Diego, pp. 655–675.10.1016/B978-012348525-0/50026-4 Search in Google Scholar

White, I., Sully, M.J., 1987. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res., 23, 8, 1514–1522.10.1029/WR023i008p01514 Search in Google Scholar

Wu, L., Pan, L., 1997. A generalized solution to infiltration from single-ring infiltrometers by scaling. Soil Sci. Soc. Am. J., 61, 1318–1322.10.2136/sssaj1997.03615995006100050005x Search in Google Scholar

Wu, L., Pan, L., Roberson, M.J., Shouse, P.J., 1997. Numerical evaluation of ring-infiltrometers under various soil conditions. Soil Sci., 162, 771–777.10.1097/00010694-199711000-00001 Search in Google Scholar

Wu, L., Pan, L., Mitchell, J., Sanden, B., 1999. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Sci. Soc. Am. J., 63, 788–792.10.2136/sssaj1999.634788x Search in Google Scholar

Xu, X., Lewis, C., Liu, W., Albertson, J.D., Kiely, G., 2012. Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: comparison of BEST and Wu methods. Agr. Water Manage., 107, 34–41.10.1016/j.agwat.2012.01.004 Search in Google Scholar

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Va-dose Zone J., 9, 1–10.10.2136/vzj2009.0039 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo