Accès libre

Changes in direct CO2 and N2O emissions from a loam Haplic Luvisol under conventional moldboard and reduced tillage during growing season and post-harvest period of red clover

À propos de cet article

Citez

Abdalla, M., Jones, M., Ambus, P., Williams, M., 2010. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input. Nutr. Cycl. Agroecosyst., 1, 53–65.10.1007/s10705-009-9273-8Search in Google Scholar

Alaoui, A., Lipiec, J., Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Till. Res., 115, 1–15.10.1016/j.still.2011.06.002Search in Google Scholar

Beheydt, D., Boeckx, P., Ahmed, H.P., Van Cleemput, O., 2008. N2O emission from conventional and minimum-tilled soils. Biol. Fertil. Soils, 44, 863–873.10.1007/s00374-008-0271-9Search in Google Scholar

Buchkina, N., Rizhiya, E., Balashov, E., 2012. N2O emission from a loamy sand Spodosol as related to soil fertility and N-fertilizer application for barley and cabbage. Arch. Agron. Soil Sci., 58, S141–S146.10.1080/03650340.2012.698729Search in Google Scholar

Buragienė, S., Šarauskis, E., Romaneckas, K., Adamavičienė, A., Kriaučiūnienė, Z., Avižienytė, D., Marozas, V., Naujokienė, V., 2019. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ., 662, 786–795.10.1016/j.scitotenv.2019.01.23630708294Search in Google Scholar

Castellini, M., Ventrella, D., 2012. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil Till. Res., 124, 47–56.10.1016/j.still.2012.04.008Search in Google Scholar

Chou, W.W., Silver, W.L., Jackson, R.D., Thompson, A.W., Allen-Diaz, B., 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biol., 14, 1382–1394.10.1111/j.1365-2486.2008.01572.xSearch in Google Scholar

de Oliveira Silva, B., Moitinho, M.R., de Araujo Santos, G.A., Teixeira, D.D.B., Fernandes, C., La Scala Jr, N., 2019. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Till. Res., 186, 224–232.10.1016/j.still.2018.10.019Search in Google Scholar

Dimassi, B., Mary, B., Wylleman, R., Labreuche, J., Couture, D., Piraux, F., Cohan, J.P., 2014. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ., 188, 134–146.10.1016/j.agee.2014.02.014Search in Google Scholar

Dobbie, K.E., Smith, K.A., 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Global Change Biol., 9, 204–218.10.1046/j.1365-2486.2003.00563.xSearch in Google Scholar

Drinkwater, L.E., Janke, R.R., Rossoni-Longnecker, L., 2000. Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems. Plant Soil, 227, 99–113.10.1023/A:1026569715168Search in Google Scholar

Elbl, J., Vaverková, M., Adamcová, D., Plošek, L., Kintl, A., Lošák, T., Hynšt, J., Kotovicová, J., 2014. Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching. Ecol. Chem. Eng. S, 21, 661–675.10.1515/eces-2014-0048Search in Google Scholar

Elder, J.W., Lal, R., 2008. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Till. Res., 98, 45–55.10.1016/j.still.2007.10.003Search in Google Scholar

Elmi, A.A., Madramootoo, C., Hamel, C., Liu, A., 2003. Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. Biol. Fertil. Soils, 38, 340–348.10.1007/s00374-003-0663-9Search in Google Scholar

Forte, A., Fiorentino, N., Fagnano, M., Fierro, A., 2017. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil Till. Res., 166, 167–178.10.1016/j.still.2016.09.014Search in Google Scholar

Fuß, R., Ruth, B., Schilling, R., Scherb, H., Munch, J.C., 2011. Pulse emissions of N2O and CO2 from an arable field depending on fertilization and tillage practice. Agr. Ecosyst. Environ., 144, 61–68.10.1016/j.agee.2011.07.020Search in Google Scholar

Głąb, T., Kulig, B., 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till. Res., 99, 169–178.10.1016/j.still.2008.02.004Search in Google Scholar

Groenigen, J.W., Georgius, P.J., van Kessel, C., Hummelink, E.W., Velthof, G.L., Zwart, K.B., 2005. Subsoil 15N-N2O concentrations in a sandy soil profile after application of 15N-fertilizer. Nutr. Cycl. Agroecosyst., 72, 13–25.10.1007/s10705-004-7350-6Search in Google Scholar

Guardia, G., Tellez-Rio, A., García-Marco, S., Martin-Lammerding, D., Tenorio, J.L., Ibáñez, M.Á., Vallejo, A., 2016. Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agric. Ecosyst. Environ., 221, 187–197.10.1016/j.agee.2016.01.047Search in Google Scholar

Horák, J., Igaz, D., Kondrlová, E., 2014. Short-term soil carbon dioxide (CO2) emission after application of conventional and reduced tillage for red clover in Western Slovakia. Euras. J. Soil Sci., 3, 206–211.10.18393/ejss.18500Search in Google Scholar

Horák, J., Balashov, E., Šimanský, V., Igaz, D., Buchkina, N., Aydin, E., Bárek, V., Drgoňová, K., 2019. Effects of conventional moldboard and reduced tillage on seasonal variations of direct CO2 and N2O emissions from a loam Haplic Luvisol. Biologia, 74, 767–782.10.2478/s11756-019-00216-zSearch in Google Scholar

Horák, J., Mukhina, I., 2016. Measured and modeled (DNDC) nitrous oxide emissions (N2O) under different crop management practices in the Nitra region, Slovakia. Acta Horticulturae et Regiotecturae, 2, 54–57.10.1515/ahr-2016-0012Search in Google Scholar

Jabro, J.D., Stevens, W.B., Iversen, W.M., Evans, R.G., 2010. Tillage depth effects on soil physical properties, sugarbeet yield, and sugarbeet quality. Commun. Soil Sci. Plant Analys., 41, 908–916.10.1080/00103621003594677Search in Google Scholar

Kieft, T.L., Soroker, E., Firestone, M.K., 1987. Microbial bio-mass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem., 19, 119–126.10.1016/0038-0717(87)90070-8Search in Google Scholar

Kong, A.Y., Fonte, S.J., van Kessel, C., Six, J., 2009. Transitioning from standard to minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. Soil Till. Res., 104, 256–262.10.1016/j.still.2009.03.004Search in Google Scholar

Krauss, M., Ruser, R., Műller, T., Hansen, S., Mäder, P., Gattinger, A., 2017. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence. Agric. Ecosyst. Environ., 239, 324–333.10.1016/j.agee.2017.01.029536215328366969Search in Google Scholar

Lee, J., Hopmans, J.W., van Kessel, C., King, A.P., Evatt, K.J., Louie, D., Rolston, D.E., Six, J., 2009. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric. Ecosyst. Environ., 129, 378–390.10.1016/j.agee.2008.10.012Search in Google Scholar

Lipiec, J., Kuś, J., Słowińska-Jurkiewicz, A., Nosalewicz, A., 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil Till. Res., 89, 210–220.10.1016/j.still.2005.07.012Search in Google Scholar

Mangalassery, S., Sjögersten, S., Sparkes, D.L., Sturrock, C.J., Craigon, J., Mooney, S.J., 2014. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Scientific Reports, 4, 1–8.10.1038/srep04586397545424699273Search in Google Scholar

Mitchell, D.C., Castellano, M.J., Sawyer, J.E., Pantoja, J., 2013. Cover crop effects on nitrous oxide emissions: role of mineralizable carbon. Soil Sci. Soc. Am. J., 77, 1765–1773.10.2136/sssaj2013.02.0074Search in Google Scholar

Muñoz-Romero, V., Lopez-Bellido, L., Lopez-Bellido, R.J., 2015. Effect of tillage system on soil temperature in a rain-fed Mediterranean Vertisol. Int. Agrophys., 29, 467–473.10.1515/intag-2015-0052Search in Google Scholar

Mutegi, J.K., Munkholm, L.J., Petersen, B.M., Hansen, E.M., Petersen, S.O., 2010. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biol. Biochem., 42, 1701–1711.10.1016/j.soilbio.2010.06.004Search in Google Scholar

Nan, W., Yue, S., Li, S., Huang, H., Shen, Y., 2016. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China. Sci. Total Environ., 542, 864–875.10.1016/j.scitotenv.2015.10.147Search in Google Scholar

Nkongolo, N.V., Johnson, S., Schmidt, K., Eivazi, F., 2010. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri. J. Environ. Sci., 22, 1029–1039.10.1016/S1001-0742(09)60214-XSearch in Google Scholar

Ochsner, T.E., Sauer, T.J., Horton, R., 2007. Soil heat storage measurements in energy balance studies. Agron. J., 99, 311–319.10.2134/agronj2005.0103SSearch in Google Scholar

Orfanus, T., Amer, A.M., Jozefaciuk, G., Fulajtar, E., Čelková, A., 2017. Water vapour adsorption on water repellent sandy soils. J. Hydrol. Hydromech., 65, 395–401.10.1515/johh-2017-0030Search in Google Scholar

Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agric. Ecosyst. Environ., 200, 33–41.10.1016/j.agee.2014.10.024Search in Google Scholar

Rizhiya, E., Olenchenko, E., Pavlik, S., Balashov, E., Buchkina, N., 2008. Effect of mineral fertilizers on crop yields and N2O emission from loamy sand Spodosol of northwestern Russia. Cereal Res. Commun., 36, 1299–1302.Search in Google Scholar

Salem, H.M., Valero, C., Muñoz, M.Á., Rodríguez, M.G., Silva, L.L., 2015. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237, 60–70.10.1016/j.geoderma.2014.08.014Search in Google Scholar

Sheehy, J., Six, J., Alakukku. L., Regina, K., 2013. Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agric. Ecosyst. Environ., 164, 190–199.10.1016/j.agee.2012.10.007Search in Google Scholar

Šimanský, V., Tobiašová, E., Chlpík, J., 2008. Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macro-aggregates. Soil Till. Res., 100, 125–132.10.1016/j.still.2008.05.008Search in Google Scholar

Šimanský, V., Balashov, E., Horák, J., 2016. Water stability of soil aggregates and their ability to sequester carbon in soils of vineyards in Slovakia. Arch. Agron. Soil Sci., 62, 177–197.10.1080/03650340.2015.1048683Search in Google Scholar

Smith, K.A., 1980. A model of the extent of anaerobic zones in aggregated soils, and its potential application to estimates of denitrification. J. Soil Sci., 31, 263–277.10.1111/j.1365-2389.1980.tb02080.xSearch in Google Scholar

Soil Survey Division Staff, 1996. Laboratory Methods Manual. Soil Survey Investigations Report No. 42. USDA–NRCS, Washington, 716 p.Search in Google Scholar

Soon, Y.K., Arshad, M.A., Haq, A., Lupwayi, N., 2007. The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil. Soil Till. Res., 95, 38–46.10.1016/j.still.2006.10.009Search in Google Scholar

Soussana, J.F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., Richards, M., Wollenberg, E., Chotte, J.-L., Torquebiau, E., Ciais, P., Smith, P., Lal, R., 2019. Matching policy and science: Rationale for the ‘4 per 1000-soils for food security and climate’initiative. Soil Till. Res., 188, 3–15.10.1016/j.still.2017.12.002Search in Google Scholar

Syakila, A., Kroeze, C., 2011. The global nitrous oxide budget revisited. Greenhouse Gas Measur. Manag., 1, 17–26.10.3763/ghgmm.2010.0007Search in Google Scholar

Ussiri, D.A.N., Lal, R., Jarecki, M.K., 2009. Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Till. Res., 104, 247–255.10.1016/j.still.2009.03.001Search in Google Scholar

Wang, Y.Y., Hu, C.S., Ming, H., Zhang, Y.M., Li, X.X., Dong, W.X., Oenema, O., 2013. Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agric. Ecosyst. Environ., 164, 260–272.10.1016/j.agee.2012.10.004Search in Google Scholar

Wessa, P., 2017. Free Statistics Software, Office for Research Development and Education, version 1.1.23-r7. https://www.wessa.netSearch in Google Scholar

Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem., 33, 1723–1732.10.1016/S0038-0717(01)00096-7Search in Google Scholar

Yuen, S.H., Pollard, A.G., 1954. Determination of nitrogen in agricultural materials by the Nessler reagent. II. Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric., 5, 364–369.10.1002/jsfa.2740050803Search in Google Scholar

Zhang, G.S., Chan, K.Y., Oates, A., Heenan, D.P., Huang, G.B., 2007. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Till. Res., 92, 122–128.10.1016/j.still.2006.01.006Search in Google Scholar

eISSN:
0042-790X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other