À propos de cet article

Citez

Akoz, M.S., Kirkgoz, M.S., Oner, A.A., 2009. Experimental and numerical modeling of a sluice gate flow. Journal of Hydraulic Research, 47, 2, 167–176.10.3826/jhr.2009.3349Search in Google Scholar

Bijankhan, M., Kouchakzadeh, S., 2015. The hydraulics of parallel sluice gates under low flow delivery condition. Flow Measurement and Instrumentation, 41, 140–148.10.1016/j.flowmeasinst.2014.10.017Search in Google Scholar

Bremen, R., Hager, W.H., 1993. T-jump in abruptly expanding channel. Journal of Hydraulic research, 31, 1, 61–78.10.1080/00221689309498860Search in Google Scholar

Demirel, E., 2015. Measured and simulated flow downstream of the submerged sluice gate. Water and Environment Journal, 29, 3, 446–455.10.1111/wej.12119Search in Google Scholar

Gumus, V., Simsek, O., Soydan, N.G., Akoz, M.S., Kirkgoz, M.S., 2016. Numerical modeling of submerged hydraulic jump from a sluice gate. Journal of Irrigation and Drainage Engineering, 142, 1. DOI: 10.1061/(asce)ir.1943-4774.000094810.1061/(ASCE)IR.1943-4774.0000948Search in Google Scholar

Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump. Springer Science & Business Media, Springer, Dordrecht. DOI: 10.1007/978-94-015-8048-910.1007/978-94-015-8048-9Search in Google Scholar

Helmi, A.M., Essawy, H.T., Wagdy, A., 2019. Three-dimensional numerical study of stacked drop manholes. Journal of Irrigation and Drainage Engineering, 145, 9. DOI: 10.1061/(ASCE)IR.1943-4774.000141410.1061/(ASCE)IR.1943-4774.0001414Search in Google Scholar

Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 1, 201–225.10.1016/0021-9991(81)90145-5Search in Google Scholar

Javan, M., Eghbalzadeh, A., 2013. 2D numerical simulation of submerged hydraulic jumps. Applied Mathematical Modelling, 37, 10–11, 6661–6669.10.1016/j.apm.2012.12.016Search in Google Scholar

Jesudhas, V., Roussinova, V., Balachandar, R., Barron, R., 2017. Submerged hydraulic jump study using DES. Journal of Hydraulic Engineering, 143, 3, Article number: 04016091.10.1061/(ASCE)HY.1943-7900.0001231Search in Google Scholar

Jesudhas, V., Balachandar, R., Roussinova, V., Barron, R., 2018. Turbulence characteristics of classical hydraulic jump using DES. Journal of Hydraulic Engineering, 144, 6. DOI: 10.1061/(ASCE)HY.1943-7900.0001427.10.1061/(ASCE)HY.1943-7900.0001427Search in Google Scholar

Jesudhas, V., Balachandar, R., Bolisetti, T., 2020a. Numerical study of a symmetric submerged spatial hydraulic jump. Journal of Hydraulic Research, 58, 2, 335–349.10.1080/00221686.2019.1581668Search in Google Scholar

Jesudhas, V., Balachandar, R., Wang, H., Murzyn, F., 2020b. Modelling hydraulic jumps: IDDES versus experiments. Environmental Fluid Mechanics, 20, 2, 393–413.10.1007/s10652-019-09734-5Search in Google Scholar

Long, D., Steffler, P.M., Rajaratnam, N., 1991. A numerical study of submerged hydraulic jumps. Journal of Hydraulic Research, 29, 3, 293–308.10.1080/00221689109498435Search in Google Scholar

Ma, F., Hou. Y., Prinos, P., 2001. Numerical calculation of submerged hydraulic jumps. Journal of Hydraulic Research, 39, 5, 493–503.10.1080/00221686.2001.9628274Search in Google Scholar

Mok, K.M., Yuen, K.V., Cheong, K.H., Hoi, K.I., 2013. A search for the dominant free surface-fluctuation frequency downstream of the oscillating hydraulic jump with the Bayesian spectral density approach. Physica Scripta, 2013, T155. DOI: 10.1088/0031-8949/2013/T155/01400710.1088/0031-8949/2013/T155/014007Search in Google Scholar

Nguyen, V.T., Nestmann, F., 2004. Applications of CFD in hydraulics and river engineering. International Journal of Computational Fluid Dynamics, 18, 2, 165–174.10.1080/10618560310001634186Search in Google Scholar

Ohtsu, I., Yasuda, Y., Ishikawa, M., 1999. Submerged hydraulic jumps below abrupt expansions. Journal of Hydraulic Engineering, 125, 5, 492–499.10.1061/(ASCE)0733-9429(1999)125:5(492)Search in Google Scholar

Qingchao, L., Drewes, U., 1994. Turbulence characteristics in free and forced hydraulic jumps. Journal of Hydraulic Research, 32, 6, 877–898.10.1080/00221689409498696Search in Google Scholar

Rajaratnam, N., Subramanya, K., 1968. Hydraulic jumps below abrupt symmetrical expansions. Journal of the Hydraulics Division, 94, 2, 481–504.10.1061/JYCEAJ.0001780Search in Google Scholar

Roache, P.J., 1998. Verification and Validation in Computational Science and Engineering. Hermosa, 446 p.Search in Google Scholar

Shaari, K.Z.K., Awang, M., 2015. Engineering Applications of Computational Fluid Dynamics. Springer.10.1007/978-3-319-02836-1Search in Google Scholar

Smith, C.D., 1989. The submerged hydraulic jump in an abrupt lateral expansion. Journal of Hydraulic Research, 27, 2, 257–266.10.1080/00221688909499185Search in Google Scholar

Zare, H.K., Baddour, R.E., 2007. Three-dimensional study of spatial submerged hydraulic jump. Canadian Journal of Civil Engineering, 34, 9, 1140–1148.10.1139/l07-041Search in Google Scholar

Zare, H.K., Baddour, R.E., 2007. Three-dimensional study of spatial submerged hydraulic jump. Canadian Journal of Civil Engineering, 34, 9, 1140–1148.10.1139/l07-041Search in Google Scholar

eISSN:
0042-790X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other