Accès libre

Improving Biomass Estimation in Ethiopian Moist Afromontane Forest Through Volume Model

,  et   
23 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Adekunle, V.A.J., Nair, K.N., Srivastava, A.K., Singh, N.K., (2013). Models and form factors for stand volume estimation in natural forest ecosystems: a case study of Katarniaghat Wildlife Sanctuary (KGWS), Bahraich District, India. Journal of Forestry Research 24, 217–226. https://doi.org/10.1007/s11676-013-0347-8 Search in Google Scholar

Akindele, S.O., LeMay, V.M., (2006). Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management 226, 41–48. https://doi.org/10.1016/j.foreco.2006.01.022 Search in Google Scholar

Asrat, Z., Eid, T., Gobakken, T., Negash, M., (2020a). Modelling and quantifying tree biometric properties of dry Afromontane forests of south-central Ethiopia. Trees 34, 1411–1426. https://doi.org/10.1007/s00468-020-02012-8 Search in Google Scholar

Asrat, Z., Eid, T., Gobakken, T., Negash, M., (2020b). Aboveground tree biomass prediction options for the Dry Afromontane forests in south-central Ethiopia. Forest Ecology and Management 473, 118335. https://doi.org/10.1016/j.foreco.2020.118335 Search in Google Scholar

Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., M. Silva, J.N., Vásquez Martínez, R., (2004). Variation in wood density determines spatial patterns inAmazonian forest biomass: Wood specific gravity and Amazonian biomass estimates. Global Change Biology 10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x Search in Google Scholar

Basuki, T.M., Van Laake, P.E., Skidmore, A.K., Hussin, Y.A., (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257, 1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027 Search in Google Scholar

Brown, Sandra., (1997). Estimating biomass and biomass change of tropical forests : a primer. Food and Agriculture Organization of the United Nations, Rome. Search in Google Scholar

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., (2009). Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x Search in Google Scholar

Colgan, M.S., Swemmer, T., Asner, G.P., (2014). Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees 28, 91–102. https://doi.org/10.1007/s00468-013-0932-7 Search in Google Scholar

Curran, T.J., Gersbach, L.N., Edwards, W., Krockenberger, A.K., (2008). Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia 9. Search in Google Scholar

Dadzie, P.K., (2013). Potential Contribution of Branchwood Quantity, Left after Logging Operations, Towards Reducing Depletion Rate and Preserving Ghana′s Forest Ecosystem. AJAF 1, 32. https://doi.org/10.11648/j.ajaf.20130102.12 Search in Google Scholar

Dessie, G., Kinlund, P., (2008). Khat expansion and forest decline in wondo genet, ethiopia. Geografiska Annaler: Series B, Human Geography 90, 187–203. https://doi.org/10.1111/j.1468-0467.2008.00286.x Search in Google Scholar

Di Cosmo, L., Gasparini, P., (2020). Predicting Diameter at Breast Height from Stump Measurements of Removed Trees to Estimate Cuttings, Illegal Loggings and Natural Disturbances. SEEFOR 11, 41–49. https://doi.org/10.15177/seefor.20-08 Search in Google Scholar

Duncanson, L.I., Dubayah, R.O., Enquist, B.J., (2015). Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the U nited S tates. Global Ecology and Biogeography 24, 1465–1475. https://doi.org/10.1111/geb.12371 Search in Google Scholar

EBI, (2024). Montane Moist Forest Ecosystem – Ethiopian Biodiversity Institute – EBI. URL https://ebi.gov.et/biodiversity/diversity-of-ecosystem/montane-moist-forest-ecosystem-2/ (accessed 8.28.24). Search in Google Scholar

Fadaei, F., Fallah, A., Latifi, H., Mohammadi, K., (2008). Determining the best form factor formula for Loblolly Pine (Pinus taeda L.) plantations at the age of 18, in Guilan-northern Iran. Caspian Journal of Environmental Sciences 6, 19–24. Search in Google Scholar

Girma, Z., Yosef, M., Ersado, M., (2012). Species Composition, Distribution and Relative Abundance of Large Mammals in and around Wondo Genet Forest Patch, Southern Ethiopia. Asian Journal of Applied Sciences 5, 538–551. https://doi.org/10.3923/ajaps.2012.538.551 Search in Google Scholar

Gonzalez De Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., Martius, C., Goodman, R.C., Disney, M., Manuri, S., Burt, A., Calders, K., (2018). Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol Evol 9, 223–234. https://doi.org/10.1111/2041-210X.12904 Search in Google Scholar

Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M., Saint-André, L., (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management 260, 1375–1388. https://doi.org/10.1016/j.foreco.2010.07.040 Search in Google Scholar

Henry, M., Maniatis, D., Gitz, V., Huberman, D., Valentini, R., (2011a). Implementation of REDD+ in sub-Saharan Africa: state of knowledge, challenges and opportunities. Envir. Dev. Econ. 16, 381–404. https://doi.org/10.1017/S1355770X11000155 Search in Google Scholar

Henry, M., Picard, N., Trotta, C., Manlay, R., Valentini, R., Bernoux, M., Saint-André, L., (2011b). Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45. https://doi.org/10.14214/sf.38 Search in Google Scholar

IPCC, (2006). IPCC guidelines for national greenhouse gas inventories. EGGLESTON, HS; BUENDIA, L.; MIWA, K.; NGARA, T. Search in Google Scholar

IPCC, (2003). Good practice guidance for land use, land-use change and forestry /The Intergovernmental Panel on Climate Change. Ed. by Jim Penman. Hayama, Kanagawa. Search in Google Scholar

Kachamba, D.J., Eid, T., (2016). Total tree, merchantable stem and branch volume models for miombo woodlands of Malawi. Southern Forests: a Journal of Forest Science 78, 41–51. Search in Google Scholar

Kaonga, M.L., Bayliss-Smith, T.P., (2010). Allometric models for estimation of aboveground carbon stocks in improved fallows in eastern Zambia. Agroforest Syst 78, 217–232. https://doi.org/10.1007/s10457-009-9253-7 Search in Google Scholar

Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambagau’, Y., Palm, C.A., (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6 Search in Google Scholar

Levy, P.E., (2004). Biomass expansion factors and root : shoot ratios for coniferous tree species in Great Britain. Forestry 77, 421–430. https://doi.org/10.1093/forestry/77.5.421 Search in Google Scholar

Mauya, Ernest W., Mugasha, W.A., Zahabu, E., Bollandsås, O.M., Eid, T., (2014). Models for estimation of tree volume in the miombo woodlands of Tanzania. Southern Forests: a Journal of Forest Science 76, 209–219. Search in Google Scholar

Mauya, Ernest W, Mugasha, W.A., Zahabu, E., Bollandsås, O.M., Eid, T., (2014). Models for estimation of tree volume in the miombo woodlands of Tanzania. Southern Forests: a Journal of Forest Science 76, 209–219. https://doi.org/10.2989/20702620.2014.957594 Search in Google Scholar

McGarvey, J.C., Thompson, J.R., Epstein, H.E., Shugart, H.H., (2015). Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink. Ecology 96, 311–317. https://doi.org/10.1890/14-1154.1 Search in Google Scholar

Mugasha, W.A., Mwakalukwa, E.E., Luoga, E., Malimbwi, R.E., Zahabu, E., Silayo, D.S., Sola, G., Crete, P., Henry, M., Kashindye, A., (2016a). Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. International Journal of Forestry Research 2016, 1–13. https://doi.org/10.1155/2016/8076271 Search in Google Scholar

Mugasha, W.A., Mwakalukwa, E.E., Luoga, E., Malimbwi, R.E., Zahabu, E., Silayo, D.S., Sola, G., Crete, P., Henry, M., Kashindye, A., (2016b). Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. International Journal of Forestry Research 2016, 1–13. https://doi.org/10.1155/2016/8076271 Search in Google Scholar

Mulatu, A., Negash, M., Asrat, Z., (2024). Species-specific allometric models for reducing uncertainty in estimating above ground biomass at Moist Evergreen Afromontane Forest of Ethiopia. Sci Rep 14, 1147. https://doi.org/10.1038/s41598-023-51002-6 Search in Google Scholar

Ngomanda, A., Engone Obiang, N.L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G.S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Botsika Bobé, K.H., Mikala Okouyi, C., Nyangadouma, R., Lépengué, N., Mbatchi, B., Picard, N., (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management 312, 1–9. https://doi.org/10.1016/j.foreco.2013.10.029 Search in Google Scholar

Nogueira, E.M., Fearnside, P.M., Nelson, B.W., (2008). Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management 256, 990–996. https://doi.org/10.1016/j.foreco.2008.06.001 Search in Google Scholar

Picard, N., Saint-André, L., Henry, M., (2012). Manual for building tree volume and biomass allometric equations from filed measurement to prediction. Food and Agriculture Organization of the United Nations (FA0), Rome. Search in Google Scholar

Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., Morel, A., (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108 Search in Google Scholar

Segura, M., Kanninen, M., (2005). Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica 1. Biotropica: The Journal of Biology and Conservation 37, 2–8. Search in Google Scholar

Senbeta, F., Schmitt, C., Woldemariam, T., Boehmer, H.J., Denich, M., (2014). Plant diversity, vegetation structure and relationship between plant communities and environmental variables in the Afromontane Forests of Ethiopia. SINET: Ethiopian Journal of Science 37, 113–130. Search in Google Scholar

Sileshi, G.W., (2014). A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 Search in Google Scholar

Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., Weiss, P., (2007). Indirect methods of large-scale forest biomass estimation. Eur J Forest Res 126, 197–207. https://doi.org/10.1007/s10342-006-0125-7 Search in Google Scholar

Štícha, V., Sharma, R.P., Vacek, Z., Vacek, S., Nuhlíček, O., (2019). Timber and Branch Volume Prediction: Effects of Stand and Site Characteristics on Dendromass and Timber-To-Branch Volume Ratio of Norway Spruce in Managed Forests. Forests 10, 144. https://doi.org/10.3390/f10020144 Search in Google Scholar

Syed Ahmad, S.S., Mohd Mushar, S.H., Zamah Shari, N.H., Kasmin, F., (2020). A Comparative study of log volume estimation by using statistical method. EJSMT 7, 22–28. https://doi.org/10.37134/ejsmt.vol7.1.3.2020 Search in Google Scholar

Taffo, B.J.W., Fonkou, T., Nguetsop, V.F., (2018). Allometric models to estimate the aboveground biomass of tropical highlands savannahs trees. Cameroon Journal of Experimental Biology 12, 49–56. Search in Google Scholar

Team, R.C., (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Search in Google Scholar

Tenzin, J., Wangchuk, T., Hasenauer, H., (2016). Form factor functions for nine commercial tree species in Bhutan. Forestry foresj;cpw044v1. https://doi.org/10.1093/forestry/cpw044 Search in Google Scholar

Tesfaye, M.A., Bravo-Oviedo, A., Bravo, F., Ruiz-Peinado, R., (2016). Aboveground biomass equations for sustainable production of fuelwood in a native dry tropical afro-montane forest of Ethiopia. Annals of Forest Science 73, 411–423. https://doi.org/10.1007/s13595-015-0533-2 Search in Google Scholar

Tetemke, B.A., Birhane, E., Rannestad, M.M., Eid, T., (2019). Allometric Models for Predicting Aboveground Biomass of Trees in the Dry Afromontane Forests of Northern Ethiopia. Forests 10, 1114. https://doi.org/10.3390/f10121114 Search in Google Scholar

Tipu, M., Manzoor Rashid, A., Tahasina, C., Mahmood, H., (2021). Semi-destructive approach in developing allometric biomass for Chukrasia tabularis in Sylhet region of Bangladesh. Jtfs 33, 203–212. https://doi.org/10.26525/jtfs2021.33.2.203 Search in Google Scholar

Tiryana, T., Khasanah, L., Priyanto, P., Rahaju, S., Muhdin, M., (2021). Form factors and volume models for estimating tree bole volume of Mahogany at community forests in Central Java. Ina.J.For.Res 8, 199–211. https://doi.org/10.20886/ijfr.2021.8.2.199-211 Search in Google Scholar

Ubuy, M.H., Eid, T., Bollandsås, O.M., Birhane, E., (2018). Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments 156, 9–18. https://doi.org/10.1016/j.jaridenv.2018.05.007 Search in Google Scholar

van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., Randerson, J.T., (2009). CO2 emissions from forest loss. Nature Geosci 2, 737–738. https://doi.org/10.1038/ngeo671 Search in Google Scholar

Vanderhaegen, K., Verbist, B., Hundera, K., Muys, B., (2015). REALU vs. REDD+: Carbon and biodiversity in the Afromontane landscapes of SW Ethiopia. Forest Ecology and Management 343, 22–33. https://doi.org/10.1016/j.foreco.2015.01.016 Search in Google Scholar

Wiemann, M.C., Williamson, G.B., (1989). Wood specific gravity gradients in tropical dry and montane rain forest trees. American Journal of Botany 76, 924–928. https://doi.org/10.1002/j.1537-2197.1989.tb15070.x Search in Google Scholar

Williamson, G.B., Wiemann, M.C., (2010). Measuring wood specific gravity…Correctly. American Journal of Botany 97, 519–524. https://doi.org/10.3732/ajb.0900243 Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Géosciences, Géosciences, autres, Sciences de la vie, Écologie