[
Adekunle, V.A.J., Nair, K.N., Srivastava, A.K., Singh, N.K., (2013). Models and form factors for stand volume estimation in natural forest ecosystems: a case study of Katarniaghat Wildlife Sanctuary (KGWS), Bahraich District, India. Journal of Forestry Research 24, 217–226. https://doi.org/10.1007/s11676-013-0347-8
]Search in Google Scholar
[
Akindele, S.O., LeMay, V.M., (2006). Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management 226, 41–48. https://doi.org/10.1016/j.foreco.2006.01.022
]Search in Google Scholar
[
Asrat, Z., Eid, T., Gobakken, T., Negash, M., (2020a). Modelling and quantifying tree biometric properties of dry Afromontane forests of south-central Ethiopia. Trees 34, 1411–1426. https://doi.org/10.1007/s00468-020-02012-8
]Search in Google Scholar
[
Asrat, Z., Eid, T., Gobakken, T., Negash, M., (2020b). Aboveground tree biomass prediction options for the Dry Afromontane forests in south-central Ethiopia. Forest Ecology and Management 473, 118335. https://doi.org/10.1016/j.foreco.2020.118335
]Search in Google Scholar
[
Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., M. Silva, J.N., Vásquez Martínez, R., (2004). Variation in wood density determines spatial patterns inAmazonian forest biomass: Wood specific gravity and Amazonian biomass estimates. Global Change Biology 10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x
]Search in Google Scholar
[
Basuki, T.M., Van Laake, P.E., Skidmore, A.K., Hussin, Y.A., (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257, 1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027
]Search in Google Scholar
[
Brown, Sandra., (1997). Estimating biomass and biomass change of tropical forests : a primer. Food and Agriculture Organization of the United Nations, Rome.
]Search in Google Scholar
[
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., (2009). Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
]Search in Google Scholar
[
Colgan, M.S., Swemmer, T., Asner, G.P., (2014). Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees 28, 91–102. https://doi.org/10.1007/s00468-013-0932-7
]Search in Google Scholar
[
Curran, T.J., Gersbach, L.N., Edwards, W., Krockenberger, A.K., (2008). Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia 9.
]Search in Google Scholar
[
Dadzie, P.K., (2013). Potential Contribution of Branchwood Quantity, Left after Logging Operations, Towards Reducing Depletion Rate and Preserving Ghana′s Forest Ecosystem. AJAF 1, 32. https://doi.org/10.11648/j.ajaf.20130102.12
]Search in Google Scholar
[
Dessie, G., Kinlund, P., (2008). Khat expansion and forest decline in wondo genet, ethiopia. Geografiska Annaler: Series B, Human Geography 90, 187–203. https://doi.org/10.1111/j.1468-0467.2008.00286.x
]Search in Google Scholar
[
Di Cosmo, L., Gasparini, P., (2020). Predicting Diameter at Breast Height from Stump Measurements of Removed Trees to Estimate Cuttings, Illegal Loggings and Natural Disturbances. SEEFOR 11, 41–49. https://doi.org/10.15177/seefor.20-08
]Search in Google Scholar
[
Duncanson, L.I., Dubayah, R.O., Enquist, B.J., (2015). Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the U nited S tates. Global Ecology and Biogeography 24, 1465–1475. https://doi.org/10.1111/geb.12371
]Search in Google Scholar
[
EBI, (2024). Montane Moist Forest Ecosystem – Ethiopian Biodiversity Institute – EBI. URL https://ebi.gov.et/biodiversity/diversity-of-ecosystem/montane-moist-forest-ecosystem-2/ (accessed 8.28.24).
]Search in Google Scholar
[
Fadaei, F., Fallah, A., Latifi, H., Mohammadi, K., (2008). Determining the best form factor formula for Loblolly Pine (Pinus taeda L.) plantations at the age of 18, in Guilan-northern Iran. Caspian Journal of Environmental Sciences 6, 19–24.
]Search in Google Scholar
[
Girma, Z., Yosef, M., Ersado, M., (2012). Species Composition, Distribution and Relative Abundance of Large Mammals in and around Wondo Genet Forest Patch, Southern Ethiopia. Asian Journal of Applied Sciences 5, 538–551. https://doi.org/10.3923/ajaps.2012.538.551
]Search in Google Scholar
[
Gonzalez De Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., Martius, C., Goodman, R.C., Disney, M., Manuri, S., Burt, A., Calders, K., (2018). Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol Evol 9, 223–234. https://doi.org/10.1111/2041-210X.12904
]Search in Google Scholar
[
Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M., Saint-André, L., (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management 260, 1375–1388. https://doi.org/10.1016/j.foreco.2010.07.040
]Search in Google Scholar
[
Henry, M., Maniatis, D., Gitz, V., Huberman, D., Valentini, R., (2011a). Implementation of REDD+ in sub-Saharan Africa: state of knowledge, challenges and opportunities. Envir. Dev. Econ. 16, 381–404. https://doi.org/10.1017/S1355770X11000155
]Search in Google Scholar
[
Henry, M., Picard, N., Trotta, C., Manlay, R., Valentini, R., Bernoux, M., Saint-André, L., (2011b). Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45. https://doi.org/10.14214/sf.38
]Search in Google Scholar
[
IPCC, (2006). IPCC guidelines for national greenhouse gas inventories. EGGLESTON, HS; BUENDIA, L.; MIWA, K.; NGARA, T.
]Search in Google Scholar
[
IPCC, (2003). Good practice guidance for land use, land-use change and forestry /The Intergovernmental Panel on Climate Change. Ed. by Jim Penman. Hayama, Kanagawa.
]Search in Google Scholar
[
Kachamba, D.J., Eid, T., (2016). Total tree, merchantable stem and branch volume models for miombo woodlands of Malawi. Southern Forests: a Journal of Forest Science 78, 41–51.
]Search in Google Scholar
[
Kaonga, M.L., Bayliss-Smith, T.P., (2010). Allometric models for estimation of aboveground carbon stocks in improved fallows in eastern Zambia. Agroforest Syst 78, 217–232. https://doi.org/10.1007/s10457-009-9253-7
]Search in Google Scholar
[
Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambagau’, Y., Palm, C.A., (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6
]Search in Google Scholar
[
Levy, P.E., (2004). Biomass expansion factors and root : shoot ratios for coniferous tree species in Great Britain. Forestry 77, 421–430. https://doi.org/10.1093/forestry/77.5.421
]Search in Google Scholar
[
Mauya, Ernest W., Mugasha, W.A., Zahabu, E., Bollandsås, O.M., Eid, T., (2014). Models for estimation of tree volume in the miombo woodlands of Tanzania. Southern Forests: a Journal of Forest Science 76, 209–219.
]Search in Google Scholar
[
Mauya, Ernest W, Mugasha, W.A., Zahabu, E., Bollandsås, O.M., Eid, T., (2014). Models for estimation of tree volume in the miombo woodlands of Tanzania. Southern Forests: a Journal of Forest Science 76, 209–219. https://doi.org/10.2989/20702620.2014.957594
]Search in Google Scholar
[
McGarvey, J.C., Thompson, J.R., Epstein, H.E., Shugart, H.H., (2015). Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink. Ecology 96, 311–317. https://doi.org/10.1890/14-1154.1
]Search in Google Scholar
[
Mugasha, W.A., Mwakalukwa, E.E., Luoga, E., Malimbwi, R.E., Zahabu, E., Silayo, D.S., Sola, G., Crete, P., Henry, M., Kashindye, A., (2016a). Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. International Journal of Forestry Research 2016, 1–13. https://doi.org/10.1155/2016/8076271
]Search in Google Scholar
[
Mugasha, W.A., Mwakalukwa, E.E., Luoga, E., Malimbwi, R.E., Zahabu, E., Silayo, D.S., Sola, G., Crete, P., Henry, M., Kashindye, A., (2016b). Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. International Journal of Forestry Research 2016, 1–13. https://doi.org/10.1155/2016/8076271
]Search in Google Scholar
[
Mulatu, A., Negash, M., Asrat, Z., (2024). Species-specific allometric models for reducing uncertainty in estimating above ground biomass at Moist Evergreen Afromontane Forest of Ethiopia. Sci Rep 14, 1147. https://doi.org/10.1038/s41598-023-51002-6
]Search in Google Scholar
[
Ngomanda, A., Engone Obiang, N.L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G.S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Botsika Bobé, K.H., Mikala Okouyi, C., Nyangadouma, R., Lépengué, N., Mbatchi, B., Picard, N., (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management 312, 1–9. https://doi.org/10.1016/j.foreco.2013.10.029
]Search in Google Scholar
[
Nogueira, E.M., Fearnside, P.M., Nelson, B.W., (2008). Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management 256, 990–996. https://doi.org/10.1016/j.foreco.2008.06.001
]Search in Google Scholar
[
Picard, N., Saint-André, L., Henry, M., (2012). Manual for building tree volume and biomass allometric equations from filed measurement to prediction. Food and Agriculture Organization of the United Nations (FA0), Rome.
]Search in Google Scholar
[
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., Morel, A., (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108
]Search in Google Scholar
[
Segura, M., Kanninen, M., (2005). Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica 1. Biotropica: The Journal of Biology and Conservation 37, 2–8.
]Search in Google Scholar
[
Senbeta, F., Schmitt, C., Woldemariam, T., Boehmer, H.J., Denich, M., (2014). Plant diversity, vegetation structure and relationship between plant communities and environmental variables in the Afromontane Forests of Ethiopia. SINET: Ethiopian Journal of Science 37, 113–130.
]Search in Google Scholar
[
Sileshi, G.W., (2014). A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026
]Search in Google Scholar
[
Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., Weiss, P., (2007). Indirect methods of large-scale forest biomass estimation. Eur J Forest Res 126, 197–207. https://doi.org/10.1007/s10342-006-0125-7
]Search in Google Scholar
[
Štícha, V., Sharma, R.P., Vacek, Z., Vacek, S., Nuhlíček, O., (2019). Timber and Branch Volume Prediction: Effects of Stand and Site Characteristics on Dendromass and Timber-To-Branch Volume Ratio of Norway Spruce in Managed Forests. Forests 10, 144. https://doi.org/10.3390/f10020144
]Search in Google Scholar
[
Syed Ahmad, S.S., Mohd Mushar, S.H., Zamah Shari, N.H., Kasmin, F., (2020). A Comparative study of log volume estimation by using statistical method. EJSMT 7, 22–28. https://doi.org/10.37134/ejsmt.vol7.1.3.2020
]Search in Google Scholar
[
Taffo, B.J.W., Fonkou, T., Nguetsop, V.F., (2018). Allometric models to estimate the aboveground biomass of tropical highlands savannahs trees. Cameroon Journal of Experimental Biology 12, 49–56.
]Search in Google Scholar
[
Team, R.C., (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
]Search in Google Scholar
[
Tenzin, J., Wangchuk, T., Hasenauer, H., (2016). Form factor functions for nine commercial tree species in Bhutan. Forestry foresj;cpw044v1. https://doi.org/10.1093/forestry/cpw044
]Search in Google Scholar
[
Tesfaye, M.A., Bravo-Oviedo, A., Bravo, F., Ruiz-Peinado, R., (2016). Aboveground biomass equations for sustainable production of fuelwood in a native dry tropical afro-montane forest of Ethiopia. Annals of Forest Science 73, 411–423. https://doi.org/10.1007/s13595-015-0533-2
]Search in Google Scholar
[
Tetemke, B.A., Birhane, E., Rannestad, M.M., Eid, T., (2019). Allometric Models for Predicting Aboveground Biomass of Trees in the Dry Afromontane Forests of Northern Ethiopia. Forests 10, 1114. https://doi.org/10.3390/f10121114
]Search in Google Scholar
[
Tipu, M., Manzoor Rashid, A., Tahasina, C., Mahmood, H., (2021). Semi-destructive approach in developing allometric biomass for Chukrasia tabularis in Sylhet region of Bangladesh. Jtfs 33, 203–212. https://doi.org/10.26525/jtfs2021.33.2.203
]Search in Google Scholar
[
Tiryana, T., Khasanah, L., Priyanto, P., Rahaju, S., Muhdin, M., (2021). Form factors and volume models for estimating tree bole volume of Mahogany at community forests in Central Java. Ina.J.For.Res 8, 199–211. https://doi.org/10.20886/ijfr.2021.8.2.199-211
]Search in Google Scholar
[
Ubuy, M.H., Eid, T., Bollandsås, O.M., Birhane, E., (2018). Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments 156, 9–18. https://doi.org/10.1016/j.jaridenv.2018.05.007
]Search in Google Scholar
[
van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., Randerson, J.T., (2009). CO2 emissions from forest loss. Nature Geosci 2, 737–738. https://doi.org/10.1038/ngeo671
]Search in Google Scholar
[
Vanderhaegen, K., Verbist, B., Hundera, K., Muys, B., (2015). REALU vs. REDD+: Carbon and biodiversity in the Afromontane landscapes of SW Ethiopia. Forest Ecology and Management 343, 22–33. https://doi.org/10.1016/j.foreco.2015.01.016
]Search in Google Scholar
[
Wiemann, M.C., Williamson, G.B., (1989). Wood specific gravity gradients in tropical dry and montane rain forest trees. American Journal of Botany 76, 924–928. https://doi.org/10.1002/j.1537-2197.1989.tb15070.x
]Search in Google Scholar
[
Williamson, G.B., Wiemann, M.C., (2010). Measuring wood specific gravity…Correctly. American Journal of Botany 97, 519–524. https://doi.org/10.3732/ajb.0900243
]Search in Google Scholar