This work is licensed under the Creative Commons Attribution 4.0 International License.
Bansal, R., Gaur, N., & Singh, S. N. (2016). Outlier detection: applications and techniques in data mining. 2016 6th International conference-cloud system and big data engineering (Confluence), Noida, India, 373–377, doi: 10.1109/CONFLUENCE.2016.7508146BansalR.GaurN.SinghS. N. (2016). Outlier detection: applications and techniques in data mining. 2016 6th International conference-cloud system and big data engineering (Confluence), Noida, India, 373–377, doi: 10.1109/CONFLUENCE.2016.7508146Open DOISearch in Google Scholar
Chen, X., & Han, T. (2021). Early Detection of Emerging Technologies using Temporal Features. Predicting the Dynamics of Research Impact, 253–269.ChenX.HanT. (2021). Early Detection of Emerging Technologies using Temporal Features. Predicting the Dynamics of Research Impact, 253–269.Search in Google Scholar
Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J., & Poon, H. (2021). Domain-specific language model pretraining for biomedical natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1), 1–23.GuY.TinnR.ChengH.LucasM.UsuyamaN.LiuX.NaumannT.GaoJ.PoonH. (2021). Domain-specific language model pretraining for biomedical natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1), 1–23.Search in Google Scholar
Hollingsworth, J. R. (2008). Scientific discoveries: An institutionalist and path-dependent perspective. Biomedical and Health Research-Commission of the European Communities Then IOS Press, 72, 317.HollingsworthJ. R. (2008). Scientific discoveries: An institutionalist and path-dependent perspective. Biomedical and Health Research-Commission of the European Communities Then IOS Press, 72, 317.Search in Google Scholar
Kuhn, T. S. (1997). The structure of scientific revolutions (Vol. 962). University of Chicago Press.KuhnT. S. (1997). The structure of scientific revolutions (Vol. 962). University of Chicago Press.Search in Google Scholar
Min, C., Bu, Y., Wu, D., Ding, Y., & Zhang, Y. (2021). Identifying citation patterns of scientific breakthroughs: A perspective of dynamic citation process. Information Processing & Management, 58(1), 102428.MinC.BuY.WuD.DingY.ZhangY. (2021). Identifying citation patterns of scientific breakthroughs: A perspective of dynamic citation process. Information Processing & Management, 58(1), 102428.Search in Google Scholar
Mugabushaka, A.-M., Sadat, J., & Faria, J. C. D. (2020). In Search of Outstanding Research Advances: Prototyping the creation of an open dataset of” editorial highlights”. arXiv preprint arXiv:2011.07910.MugabushakaA.-M.SadatJ.FariaJ. C. D. (2020). In Search of Outstanding Research Advances: Prototyping the creation of an open dataset of” editorial highlights”. arXiv preprint arXiv:2011.07910.Search in Google Scholar
Ponomarev, I. V., Williams, D. E., Hackett, C. J., Schnell, J. D., & Haak, L. L. (2014). Predicting highly cited papers: A method for early detection of candidate breakthroughs. Technological Forecasting and Social Change, 81, 49–55.PonomarevI. V.WilliamsD. E.HackettC. J.SchnellJ. D.HaakL. L. (2014). Predicting highly cited papers: A method for early detection of candidate breakthroughs. Technological Forecasting and Social Change, 81, 49–55.Search in Google Scholar
Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.ReimersN.GurevychI. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.Search in Google Scholar
Savov, P., Jatowt, A., & Nielek, R. (2020). Identifying breakthrough scientific papers. Information Processing & Management, 57(2), 102168.SavovP.JatowtA.NielekR. (2020). Identifying breakthrough scientific papers. Information Processing & Management, 57(2), 102168.Search in Google Scholar
Schneider, J. W., & Costas, R. (2017). Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches. Journal of the Association for Information Science and Technology, 68(3), 709–723.SchneiderJ. W.CostasR. (2017). Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches. Journal of the Association for Information Science and Technology, 68(3), 709–723.Search in Google Scholar
Small, H., Tseng, H., & Patek, M. (2017). Discovering discoveries: Identifying biomedical discoveries using citation contexts. Journal of Informetrics, 11(1), 46–62.SmallH.TsengH.PatekM. (2017). Discovering discoveries: Identifying biomedical discoveries using citation contexts. Journal of Informetrics, 11(1), 46–62.Search in Google Scholar
Swales, J. M. (2011). Aspects of article introductions (No. 1). University of Michigan Press.SwalesJ. M. (2011). Aspects of article introductions (No. 1). University of Michigan Press.Search in Google Scholar
Wang, S., Ma, Y., Mao, J., Bai, Y., Liang, Z., & Li, G. (2023). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. Journal of the Association for Information Science and Technology, 74(2), 150–167.WangS.MaY.MaoJ.BaiY.LiangZ.LiG. (2023). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. Journal of the Association for Information Science and Technology, 74(2), 150–167.Search in Google Scholar
Wang, X., Yang, X., Du, J., Wang, X., Li, J., & Tang, X. (2021). A deep learning approach for identifying biomedical breakthrough discoveries using context analysis. Scientometrics, 126, 5531–5549.WangX.YangX.DuJ.WangX.LiJ.TangX. (2021). A deep learning approach for identifying biomedical breakthrough discoveries using context analysis. Scientometrics, 126, 5531–5549.Search in Google Scholar
Winnink, J., Tijssen, R. J., & Van Raan, A. (2019). Searching for new breakthroughs in science: How effective are computerised detection algorithms? Technological Forecasting and Social Change, 146, 673–686.WinninkJ.TijssenR. J.Van RaanA. (2019). Searching for new breakthroughs in science: How effective are computerised detection algorithms?Technological Forecasting and Social Change, 146, 673–686.Search in Google Scholar