À propos de cet article

Citez

1. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289-1367. doi: 10.1093/eurheartj/ehaa575. Erratum in: Eur Heart J. 2021;42:1908. Erratum in: Eur Heart J. 2021;42:1925.32860058 Open DOISearch in Google Scholar

2. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth Universal Definition of Myocardial Infarction. J Am Coll Cardiol. 2018;72:2231-2264. doi: 10.1016/j.jacc.2018.08.1038.30153967 Open DOISearch in Google Scholar

3. Jaffe AS, Ordonez-Llanos J. High-sensitivity cardiac troponin: from theory to clinical practice. Rev Esp Cardiol (Engl Ed). 2013;66:687-691. doi: 10.1016/j.rec.2013.04.020.24773672 Open DOISearch in Google Scholar

4. Arslan M, Dedic A, Boersma E, Dubois EA. Serial high-sensitivity cardiac troponin T measurements to rule out acute myocardial infarction and a single high baseline measurement for swift rule-in: A systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care. 2020;9:14-22. doi: 10.1177/2048872618819421.700855130618277 Open DOISearch in Google Scholar

5. Lazar DR, Lazar FL, Homorodean C, et al. High-Sensitivity Troponin: A Review on Characteristics, Assessment, and Clinical Implications. Dis Markers. 2022;2022:9713326. doi: 10.1155/2022/9713326.896560235371340 Open DOISearch in Google Scholar

6. Hinton J, Gabara L, Curzen N. Is the true clinical value of high-sensitivity troponins as a biomarker of risk? The concept that detection of high-sensitivity troponin ‘never means nothing’. Expert Rev Cardiovasc Ther. 2020;18:843-857. doi: 10.1080/14779072.2020.1828063.32966128 Open DOISearch in Google Scholar

7. Giannitsis E, Gopi V. Biomarkers for infarct diagnosis and rapid rule-out/rule-in of acute myocardial infarction. Herz. 2020;45:509-519. English. doi: 10.1007/s00059-020-04943-x.32468140 Open DOISearch in Google Scholar

8. Sandoval Y, Apple FS, Mahler SA, et al. High-Sensitivity Cardiac Troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guidelines for the Evaluation and Diagnosis of Acute Chest Pain. Circulation. 2022;146:569-581. doi: 10.1161/CIRCULATIONAHA.122.059678.35775423 Open DOISearch in Google Scholar

9. Mair J, Jaffe A, Lindahl B, et al. The clinical approach to diagnosing peri-procedural myocardial infarction after percutaneous coronary interventions according to the fourth universal definition of myocardial infarction – from the study group on biomarkers of the European Society of Cardiology (ESC) Association for Acute CardioVascular Care (ACVC). Biomarkers. 2022;27:407-417. doi: 10.1080/1354750X.2022.2055792.934493435603440 Open DOISearch in Google Scholar

10. Kankra M, Mehta A, Sawhney JPS, et al. Improving the ACS Triage-Using High Sensitivity TroponinI and Copeptin for Early ‘Rule-Out’ of AMI. Indian J Clin Biochem. 2022;37:449-457. doi: 10.1007/s12291-021-01015-7.957383936262786 Open DOISearch in Google Scholar

11. Giannitsis E, Garfias-Veitl T, Slagman A, et al. Biomarkers-in-Cardiology 8 RE-VISITED-Consistent Safety of Early Discharge with a Dual Marker Strategy Combining a Normal hs-cTnT with a Normal Copeptin in Low-to-Intermediate Risk Patients with Suspected Acute Coronary Syndrome – A Secondary Analysis of the Randomized Biomarkers-in-Cardiology 8 Trial. Cells. 2022;11:211. doi: 10.3390/cells11020211.877359235053326 Open DOISearch in Google Scholar

12. Elseidy SA, Awad AK, Mandal D, Vorla M, Elkheshen A, Mohamad T. Copeptin plus troponin in the rapid rule out of acute myocardial infarction and prognostic value on post-myocardial infarction outcomes: a systematic review and diagnostic accuracy study. Heart Vessels. 2023;38:1-7. doi: 10.1007/s00380-022-02123-x.35794488 Open DOISearch in Google Scholar

13. Ozden O, Yesildas C, Demir M, et al. A Novel Indicator of Myocardial Injury after Acute Myocardial Infarction: ‘DPP-3’. Clin Appl Thromb Hemost. 2022;28:10760296221145174. doi: 10.1177/10760296221145174.975634936514254 Open DOISearch in Google Scholar

14. Udaya R, Sivakanesan R. Synopsis of Biomarkers of Atheromatous Plaque Formation, Rupture and Thrombosis in the Diagnosis of Acute Coronary Syndromes. Curr Cardiol Rev. 2022;18:53-62. doi: 10.2174/1573403X18666220411113450.35410616 Open DOISearch in Google Scholar

15. Peacock WF, Maisel AS, Mueller C, et al. Finding acute coronary syndrome with serial troponin testing for rapid assessment of cardiac ischemic symptoms (FAST-TRAC): a study protocol. Clin Exp Emerg Med. 2022;9:140-145. doi: 10.15441/ceem.21.154.928888435843615 Open DOISearch in Google Scholar

16. Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine – a review. Mikrochim Acta. 2022;189:142. doi: 10.1007/s00604-022-05186-9.891782935279780 Open DOISearch in Google Scholar

17. Kleemeier S, Abildgaard A, Ladefoged SA, Thorsted Sørensen J, Stengaard C, Adelborg K. High-sensitivity troponin T and I in patients suspected of acute myocardial infarction. Scand J Clin Lab Invest. 2022;82:96-103. doi: 10.1080/00365513.2022.2033310.35253566 Open DOISearch in Google Scholar

18. Younis A, Farooq S, Bisognano JD, et al. Outcomes Associated with Introduction of the 5th Generation High-Sensitivity Cardiac Troponin in Patients Presenting with Cardiovascular Disorders. J Emerg Med. 2022;62:657-667. doi: 10.1016/j.jemermed.2022.01.011.35382958 Open DOISearch in Google Scholar

19. Bruinen AL, Frenk LDS, de Theije F, et al. Point-of-care high-sensitivity troponin-I analysis in capillary blood for acute coronary syndrome diagnostics. Clin Chem Lab Med. 2022;60:1669-1674. doi: 10.1515/cclm-2022-0268.35858956 Open DOISearch in Google Scholar

20. Tveit SH, Myhre PL, Hanssen TA, et al. Cardiac troponin I and T for ruling out coronary artery disease in suspected chronic coronary syndrome. Sci Rep. 2022;12:945. doi: 10.1038/s41598-022-04850-7.876656435042885 Open DOISearch in Google Scholar

21. Ravanavena A, Ravindra C, Igweonu-Nwakile EO, et al. Absolute Versus Relative Changes in Cardiac Troponins in the Diagnosis of Myocardial Infarction: A Systematic Review and Meta-Analysis. Cureus. 2022;14:e27414. doi: 10.7759/cureus.27414.933878335915617 Open DOISearch in Google Scholar

22. Juknevičienė R, Juknevičius V, Jasiūnas E, et al. Chest pain in the emergency department: From score to core – A prospective clinical study. Medicine (Baltimore). 2022;101:e29579. doi: 10.1097/MD.0000000000029579.930235535866759 Open DOISearch in Google Scholar

23. Lee KK, Bularga A, O’Brien R, et al. Troponin-Guided Coronary Computed Tomographic Angiography After Exclusion of Myocardial Infarction. J Am Coll Cardiol. 2021;78:1407-1417. doi: 10.1016/j.jacc.2021.07.055.848279334593122 Open DOISearch in Google Scholar

24. Butt JH, Kofoed KF, Kelbæk H, et al. Importance of Risk Assessment in Timing of Invasive Coronary Evaluation and Treatment of Patients With Non-ST-Segment-Elevation Acute Coronary Syndrome: Insights From the VERDICT Trial. J Am Heart Assoc. 2021;10:e022333. doi: 10.1161/JAHA.121.022333.864912434585591 Open DOISearch in Google Scholar

25. Gray AJ, Roobottom C, Smith JE, et al. Early computed tomography coronary angiography in adults presenting with suspected acute coronary syndrome: the RAPID-CTCA RCT. Health Technol Assess. 2022;26:1-114. doi: 10.3310/IRWI5180.36062819 Open DOISearch in Google Scholar

26. Mehta P, McDonald S, Hirani R, Good D, Diercks D. Major adverse cardiac events after emergency department evaluation of chest pain patients with advanced testing: Systematic review and meta-analysis. Acad Emerg Med. 2022;29:748-764. doi: 10.1111/acem.14407.34741781 Open DOISearch in Google Scholar

27. Williams MGL, Liang K, De Garate E, et al. Peak Troponin and CMR to Guide Management in Suspected ACS and Nonobstructive Coronary Arteries. JACC Cardiovasc Imaging. 2022;15:1578-1587. doi: 10.1016/j.jcmg.2022.03.017.36075617 Open DOISearch in Google Scholar

28. Emakhu J, Monplaisir L, Aguwa C, et al. Acute coronary syndrome prediction in emergency care: A machine learning approach. Comput Methods Programs Biomed. 2022;225:107080. doi: 10.1016/j.cmpb.2022.107080.36037605 Open DOISearch in Google Scholar

29. Ke J, Chen Y, Wang X, et al. Machine learning-based inhospital mortality prediction models for patients with acute coronary syndrome. Am J Emerg Med. 2022;53:127-134. doi: 10.1016/j.ajem.2021.12.070.35033770 Open DOISearch in Google Scholar

30. Doudesis D, Lee KK, Yang J, et al. Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. Lancet Digit Health. 2022;4:e300-e308. doi: 10.1016/S2589-7500(22)00025-5.905233135461689 Open DOISearch in Google Scholar

31. Mohan N, Shivakumar KM, Kl CK. Correlation of Troponin I with Left Ventricular Ejection Fraction in Acute Coronary Syndrome. J Assoc Physicians India. 2022;70:11-12. PMID: 35443386. Search in Google Scholar

32. Sadiq S, Ijaz A, Dawood MM, Sadiq T. B-type natriuretic peptide as diagnostic and prognostic marker in various forms of acute coronary syndrome. Pak J Med Sci. 2022;38:970-975. doi: 10.12669/pjms.38.4.4910.912192635634594 Open DOISearch in Google Scholar

33. Kavsak PA, Mondoux SE, Hewitt MK, Ainsworth C, Hill S, Worster A. Can the Addition of NT-proBNP and Glucose Measurements Improve the Prognostication of High-Sensitivity Cardiac Troponin Measurements for Patients with Suspected Acute Coronary Syndrome? J Cardiovasc Dev Dis. 2021;8:106. doi: 10.3390/jcdd8090106.847114934564124 Open DOISearch in Google Scholar

34. Ledwoch J, Schneider A, Leidgschwendner K, et al. Diagnostic Accuracy of High-Sensitive Troponin for the Identification of Myocardial Infarction in Patients Presenting with Acute Heart Failure. J Emerg Med. 2022;62:359-367. doi: 10.1016/j.jemermed.2021.11.013.35065860 Open DOISearch in Google Scholar

35. Fermann GJ, Schrock JW, Levy PD, et al. Troponin is unrelated to outcomes in heart failure patients discharged from the emergency department. J Am Coll Emerg Physicians Open. 2022;3:e12695. doi: 10.1002/emp2.12695.899461635434709 Open DOISearch in Google Scholar

36. Ratmann PD, Boeddinghaus J, Nestelberger T, et al. Extending the no objective testing rules to patients triaged by the European Society of Cardiology 0/1-hour algorithms. Eur Heart J Acute Cardiovasc Care. 2022;11:834-840. doi: 10.1093/ehjacc/zuac120.36179255 Open DOISearch in Google Scholar

37. Wang JL, Guo CY, Li HW, Zhao XQ, Zhao SM. Prognostic Value of NT-proBNP in Patients With Successful PCI for ACS and Normal Left Ventricular Ejection Fraction. Am J Med Sci. 2022;363:333-341. doi: 10.1016/j.amjms.2021.10.017.34986361 Open DOISearch in Google Scholar

38. Galvani M, Ottani F, Oltrona L, et al. N-terminal pro-brain natriuretic peptide on admission has prognostic value across the whole spectrum of acute coronary syndromes. Circulation. 2004;110:128-34. doi: 10.1161/01.CIR.0000134480.06723.D8.15197143 Open DOISearch in Google Scholar

39. Lu PJ, Gong XW, Liu Y, et al. Optimization of GRACE Risk Stratification by N-Terminal Pro-B-type Natriuretic Peptide Combined With D-Dimer in Patients With Non-ST-Elevation Myocardial Infarction. Am J Cardiol. 2021;140:13-19. doi: 10.1016/j.amjcard.2020.10.050.33159905 Open DOISearch in Google Scholar

40. McLeod P, Coffey S, Sneddon K, Williams M, Kerr A, Pemberton J. Clinically Acquired High Sensitivity Cardiac Troponin T is a Poor Predictor of Reduced Left Ventricular Ejection Fraction After ST Elevation Myocardial Infarction: A National Cohort Study-ANZACS-QI 65. Heart Lung Circ. 2022;31:1513-1523. doi: 10.1016/j.hlc.2022.07.014.36041986 Open DOISearch in Google Scholar

41. Brzezinski RY, Melloul A, Berliner S, et al. Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT). J Clin Med. 2022;11:2453. doi: 10.3390/jcm11092453.910504435566579 Open DOISearch in Google Scholar

42. Kaura A, Hartley A, Panoulas V, et al. Mortality risk prediction of high-sensitivity C-reactive protein in suspected acute coronary syndrome: A cohort study. PLoS Med. 2022;19:e1003911. doi: 10.1371/journal.pmed.1003911.886328235192610 Open DOISearch in Google Scholar

43. Mustafic S, Ibralic AM, Loncar D. Association of Inflammatory and Hemostatic Parameters With Values of High Sensitive Troponin in Patients With Acute Coronary Syndrome. Med Arch. 2022;76:84-89. doi: 10.5455/medarh.2022.76.84-89.923346335774044 Open DOISearch in Google Scholar

44. Tsai MK, Lai CH, Hung CL, Wu KY. Troponin I Cutoff for Non-ST-Segment Elevation Myocardial Infarction in Sepsis. Mediators Inflamm. 2022;2022:5331474. doi: 10.1155/2022/5331474.916882435677736 Open DOISearch in Google Scholar

45. Gallacher PJ, Miller-Hodges E, Shah ASV, et al. High-sensitivity cardiac troponin and the diagnosis of myocardial infarction in patients with kidney impairment. Kidney Int. 2022;102:149-159. doi: 10.1016/j.kint.2022.02.019.35271932 Open DOISearch in Google Scholar

46. Wan Nur Aimi WMZ, Noorazliyana S, Tuan Salwani TI, Adlin Zafrulan Z, Najib Majdi Y, Noor Azlin Azraini CS. Elevation of Highly Sensitive Cardiac Troponin T Among End-Stage Renal Disease Patients Without Acute Coronary Syndrome. Malays J Med Sci. 2021;28:64-71. doi: 10.21315/mjms2021.28.5.6.879397335115888 Open DOISearch in Google Scholar

47. Ajie OI, Azinge EC, Bello BT, Oshodi TA, Soriyan OO, Udenze IC. Clinical Significance of Elevated Levels of Cardiac Troponin T in Patients with Chronic Kidney Disease at Lagos University Teaching Hospital, Lagos. West Afr J Med. 2022;39:3-10.10.55891/wajm.v39i1.85 Search in Google Scholar

48. Vitolo M, Malavasi VL, Proietti M, et al. Cardiac troponins and adverse outcomes in European patients with atrial fibrillation: A report from the ESC-EHRA EORP atrial fibrillation general long-term registry. Eur J Intern Med. 2022;99:45-56. doi: 10.1016/j.ejim.2022.01.025.35177307 Open DOISearch in Google Scholar

49. Koechlin L, Boeddinghaus J, Nestelberger T, et al. Lower diagnostic accuracy of hs-cTnI in patients with prior coronary artery bypass grafting. Int J Cardiol. 2022;354:1-6. doi: 10.1016/j.ijcard.2022.02.025.35189168 Open DOISearch in Google Scholar

50. Ticinesi A, Nouvenne A, Cerundolo N, et al. Accounting for frailty and multimorbidity when interpreting high-sensitivity troponin I tests in oldest old. J Am Geriatr Soc. 2022;70:549-559. doi: 10.1111/jgs.17566.929912034792185 Open DOISearch in Google Scholar

51. Khetpal V, Berkowitz J, Vijayakumar S, et al. Long-term Cardiovascular Manifestations and Complications of COVID-19: Spectrum and Approach to Diagnosis and Management. R I Med J (2013). 2022;105:16-22. Search in Google Scholar

52. Iorio A, Lombardi CM, Specchia C, et al. Combined Role of Troponin and Natriuretic Peptides Measurements in Patients With Covid-19 (from the Cardio-COVID-Italy Multicenter Study). Am J Cardiol. 2022;167:125-132. doi: 10.1016/j.amjcard.2021.11.054.876795335063263 Open DOISearch in Google Scholar

53. Skoda R, Juhász V, Dohy Z, et al. The effect of COVID-19 pandemic on myocardial infarction care and on its prognosis – Experience at a high volume Hungarian cardiovascular center. Physiol Int. 2022;109:419-426. doi: 10.1556/2060.2022.00083.36223273 Open DOISearch in Google Scholar

54. Roos A, Edgren G, Holzmann MJ. Temporal Changes of Stable High-Sensitivity Cardiac Troponin T Levels and Prognosis. J Am Heart Assoc. 2022;11:e025082. doi: 10.1161/JAHA.121.025082.923869835621209 Open DOISearch in Google Scholar

55. Biener M, Giannitsis E, Hogrefe K, et al. Prognostic value of changes in high-sensitivity cardiac troponin T beyond biological variation in stable outpatients with cardiovascular disease: a validation study. Clin Res Cardiol. 2022;111:333-342. doi: 10.1007/s00392-021-01952-6.887312834694435 Open DOISearch in Google Scholar

56. Chapman AR, Lee KK, McAllister DA, et al. Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome. JAMA. 2017;318:1913-1924. doi: 10.1001/jama.2017.17488. Erratum in: JAMA. 2018;319:1168. Soerensen NA [corrected to Sorensen NA].571029329127948 Open DOISearch in Google Scholar

57. Horiuchi Y, Wettersten N, Patel MP, et al. Prognosis is worse with elevated cardiac troponin in nonacute coronary syndrome compared with acute coronary syndrome. Coron Artery Dis. 2022;33:376-384. doi: 10.1097/MCA.0000000000001135.35880560 Open DOISearch in Google Scholar

58. Hartikainen TS, Goßling A, Sörensen NA, et al. Prognostic Implications of a Second Peak of High-Sensitivity Troponin T After Myocardial Infarction. Front Cardiovasc Med. 2022;8:780198. doi: 10.3389/fcvm.2021.780198.884176735174220 Open DOISearch in Google Scholar

59. Rubini Gimenez M, Twerenbold R, Jaeger C, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med. 2015;128:861-870.e4. doi: 10.1016/j.amjmed.2015.01.046.25840034 Open DOISearch in Google Scholar

60. Twerenbold R, Costabel JP, Nestelberger T, et al. Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction. J Am Coll Cardiol. 2019;74:483-494. doi: 10.1016/j.jacc.2019.05.046.31345421 Open DOISearch in Google Scholar

61. Nomura O, Hashiba K, Kikuchi M, et al. Performance of the 0-Hour/1-Hour Algorithm for Diagnosing Myocardial Infarction in Patients With Chest Pain in the Emergency Department – A Systematic Review and Meta-Analysis. Circ Rep. 2022;4:241-247. doi: 10.1253/circrep.CR-22-0001.916851135774074 Open DOISearch in Google Scholar

62. Khan A, Saleem MS, Willner KD, et al. Association of Chest Pain Protocol-Discordant Discharge With Outcomes Among Emergency Department Patients With Modest Elevations of High-Sensitivity Troponin. JAMA Netw Open. 2022;5:e2226809. doi: 10.1001/jamanetworkopen.2022.26809.937974435969395 Open DOISearch in Google Scholar

63. van den Berg P, Collinson P, Morris N, Body R. Diagnostic accuracy of a high-sensitivity troponin I assay and external validation of 0/3 h rule out strategies. Eur Heart J Acute Cardiovasc Care. 2022;11:127-136. doi: 10.1093/ehjacc/zuab102.35136994 Open DOISearch in Google Scholar

64. Breuckmann F, Settelmeier S, Rassaf T, et al. Survey of clinical practice pattern in Germany’s certified chest pain units: Adherence to the European Society of Cardiology guidelines on non-ST-segment elevation acute coronary syndrome. Herz. 2022;47:543-552. doi: 10.1007/s00059-021-05079-2.857764534755215 Open DOISearch in Google Scholar

65. Hariri E, Kassas I, Hammoud MA, et al. Same day discharge following non-elective PCI for non-ST elevation acute coronary syndromes. Am Heart J. 2022;246:125-135. doi: 10.1016/j.ahj.2021.12.015.34998967 Open DOISearch in Google Scholar

66. Clerico A, Zaninotto M, Aimo A, et al. Use of high-sensitivity cardiac troponins in the emergency department for the early rule-in and rule-out of acute myocardial infarction without persistent ST-segment elevation (NSTEMI) in Italy. Clin Chem Lab Med. 2021;60:169-182. doi: 10.1515/cclm-2021-1085.34927403 Open DOISearch in Google Scholar

67. Sandeman D, Syed MBJ, Kimenai DM, et al. Implementation of an early rule-out pathway for myocardial infarction using a high-sensitivity cardiac troponin T assay. Open Heart. 2021;8:e001769. doi: 10.1136/openhrt-2021-001769.862741234824100 Open DOISearch in Google Scholar

68. Tjora HL, Steiro OT, Langørgen J, et al. Diagnostic Performance of Novel Troponin Algorithms for the Rule-Out of Non-ST-Elevation Acute Coronary Syndrome. Clin Chem. 2022;68:291-302. doi: 10.1093/clinchem/hvab225.34897415 Open DOISearch in Google Scholar

69. Chuang MA, Gnanamanickam ES, Karnon J, et al. Cost effectiveness of a 1-hour high-sensitivity troponin-T protocol: An analysis of the RAPID-TnT trial. Int J Cardiol Heart Vasc. 2021;38:100933. doi: 10.1016/j.ijcha.2021.100933.872842735024428 Open DOISearch in Google Scholar

70. Suh EH, Tichter AM, Ranard LS, et al. Impact of a rapid high-sensitivity troponin pathway on patient flow in an urban emergency department. J Am Coll Emerg Physicians Open. 2022;3:e12739. doi: 10.1002/emp2.12739.907123735571147 Open DOISearch in Google Scholar

71. Couch LS, Sinha A, Navin R, et al. Rapid risk stratification of acute coronary syndrome: adoption of an adapted European Society of Cardiology 0/1-hour troponin algorithm in a real-world setting. Eur Heart J Open. 2022;2:oeac048. doi: 10.1093/ehjopen/oeac048.940425436032815 Open DOISearch in Google Scholar

72. Bozdereli Berikol G, Aydın H, Doğan H. Early discharging patients with chest pain using EDACS-ADP and COMPASS-MI risk predictors. Heart Vessels. 2022;37:1316-1325. doi: 10.1007/s00380-022-02036-9.885010235133498 Open DOISearch in Google Scholar

73. Gohbara M, Iwahashi N, Okada K, et al. A Simple Risk Score to Differentiate Between Coronary Artery Obstruction and Coronary Artery Spasm of Patients With Acute Coronary Syndrome Without Persistent ST-Segment Elevation. Circ J. 2022;86:1509-1518. doi: 10.1253/circj.CJ-22-0096.35599005 Open DOISearch in Google Scholar

74. Antwi-Amoabeng D, Roongsritong C, Taha M, et al. SVEAT score outperforms HEART score in patients admitted to a chest pain observation unit. World J Cardiol. 2022;14:454-461. doi: 10.4330/wjc.v14.i8.454.945325736160811 Open DOISearch in Google Scholar

75. Dupuy AM, Pasquier G, Thiebaut L, Roubille F, Sebbane M, Cristol JP. Additive value of bioclinical risk scores to high sensitivity troponins-only strategy in acute coronary syndrome. Clin Chim Acta. 2021;523:273-284. doi: 10.1016/j.cca.2021.10.008.34648808 Open DOISearch in Google Scholar

76. Matuskowitz AJ, Hall JP, Gregoski MJ, Saef SH. Clinician Perception of Risk As a Barrier to Implementation of a High-sensitivity Troponin Accelerated Diagnostic Protocol. Crit Pathw Cardiol. 2022;21:73-76. doi: 10.1097/HPC.0000000000000287.35604774 Open DOISearch in Google Scholar

77. Koper LH, Frenk LDS, Meeder JG, et al. URGENT 1.5: diagnostic accuracy of the modified HEART score, with fingerstick point-of-care troponin testing, in ruling out acute coronary syndrome. Neth Heart J. 2022;30:360-369. doi: 10.1007/s12471-021-01646-8.927054634817832 Open DOISearch in Google Scholar

78. Todd F, Duff J, Carlton E. Identifying low-risk chest pain in the emergency department without troponin testing: a validation study of the HE-MACS and HEAR risk scores. Emerg Med J. 2022;39:515-518. doi: 10.1136/emermed-2021-211669.34753776 Open DOISearch in Google Scholar

79. Mark DG, Huang J, Ballard DW, et al. Graded Coronary Risk Stratification for Emergency Department Patients With Chest Pain: A Controlled Cohort Study. J Am Heart Assoc. 2021;10:e022539. doi: 10.1161/JAHA.121.022539.875192534743565 Open DOISearch in Google Scholar

eISSN:
2457-5518
Langue:
Anglais