Integration of DWT, FFT, and Spatial domain for the identification of epileptic seizure utilizing electroencephalogram signal
, , et
08 août 2025
À propos de cet article
Catégorie d'article: Research Article
Publié en ligne: 08 août 2025
Reçu: 06 mars 2025
DOI: https://doi.org/10.2478/ijssis-2025-0041
Mots clés
© 2025 Rabel Guharoy et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Performance measure of case 1 (combined features + PCA)
LR | 0.99 | 0.99 | 0.97 | 0.98 |
K-NN | 0.98 | 0.97 | 0.96 | 0.97 |
SVM | 0.98 | 0.97 | 0.96 | 0.97 |
Performance measure of case 2 (combined features + LDA)
LR | 0.97 | 0.96 | 0.92 | 0.94 |
K-NN | 0.96 | 0.96 | 0.90 | 0.92 |
SVM | 0.96 | 0.96 | 0.90 | 0.92 |
Performance measure of case 3 (combined features)
LR | 0.98 | 0.96 | 0.96 | 0.96 |
K-NN | 0.95 | 0.96 | 0.89 | 0.92 |
SVM | 0.95 | 0.96 | 0.89 | 0.92 |
Comparison with other techniques
[ |
Decision tree | 99 |
[ |
Multilayer perceptron neural network | 99 |
[ |
ANN | 98.30 |
[ |
SVM | 97.98 |
[ |
PCA with RF | 92.69 |
[ |
PCA with ANN | 97.55 |
Proposed model | LR | 99 |