Acceso abierto

Integration of DWT, FFT, and Spatial domain for the identification of epileptic seizure utilizing electroencephalogram signal

, ,  y   
08 ago 2025

Cite
Descargar portada

Figure 1:

Proposed model of epilepsy detection process. DWT, discrete wavelet transform; EEG, electroencephalogram; FFT, fast Fourier transform; LDA, linear discriminant analysis; PCA, principal component analysis.
Proposed model of epilepsy detection process. DWT, discrete wavelet transform; EEG, electroencephalogram; FFT, fast Fourier transform; LDA, linear discriminant analysis; PCA, principal component analysis.

Figure 2:

DWT decomposition up to level two (2). DWT, discrete wavelet transform; EEG, electroencephalogram.
DWT decomposition up to level two (2). DWT, discrete wavelet transform; EEG, electroencephalogram.

Figure 3:

Samples of EEG signals of 5 different classes. EEG, electroencephalogram.
Samples of EEG signals of 5 different classes. EEG, electroencephalogram.

Figure 4:

Samples of A1 after applying DWT of 5 different classes. DWT, discrete wavelet transform.
Samples of A1 after applying DWT of 5 different classes. DWT, discrete wavelet transform.

Figure 5:

Samples of EEG signal after application of FFT for 5 different classes. EEG, electroencephalogram; FFT, fast Fourier transform.
Samples of EEG signal after application of FFT for 5 different classes. EEG, electroencephalogram; FFT, fast Fourier transform.

Figure 6:

Bar chart of total number of samples non-seizure and seizure.
Bar chart of total number of samples non-seizure and seizure.

Performance measure of case 1 (combined features + PCA)

Algorithm Accuracy Precision Recall F-1 Score
LR 0.99 0.99 0.97 0.98
K-NN 0.98 0.97 0.96 0.97
SVM 0.98 0.97 0.96 0.97

Performance measure of case 2 (combined features + LDA)

Algorithm Accuracy Precision Recall F-1 Score
LR 0.97 0.96 0.92 0.94
K-NN 0.96 0.96 0.90 0.92
SVM 0.96 0.96 0.90 0.92

Performance measure of case 3 (combined features)

Algorithm Accuracy Precision Recall F-1 Score
LR 0.98 0.96 0.96 0.96
K-NN 0.95 0.96 0.89 0.92
SVM 0.95 0.96 0.89 0.92

Comparison with other techniques

References Classifier Accuracy (%)
[41] Decision tree 99
[42] Multilayer perceptron neural network 99
[43] ANN 98.30
[44] SVM 97.98
[45] PCA with RF 92.69
[45] PCA with ANN 97.55
Proposed model LR 99
Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Ingeniería, Introducciones y reseñas, Ingeniería, otros