This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
R. J. Mobbs, K. Phan, G. Malham, K. Seex and P. J. Rao, “Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF,” Journal of Spine Surgery, vol. 1, no. 1, p. 2–18, 2015.MobbsR. J.PhanK.MalhamG.SeexK.RaoP. J.“Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF,”Journal of Spine Surgery112182015Search in Google Scholar
D. Hoy, C. Bain, G. Williams, L. March, P. Brooks, F. Blyth, A. Woolf, T. Vos and R. Buchbinder, “A systematic review of the global prevalence of low back pain,” Arthritis and Rheumatism, vol. 64, no. 6, pp. 2028–2037, 2012.HoyD.BainC.WilliamsG.MarchL.BrooksP.BlythF.WoolfA.VosT.BuchbinderR.“A systematic review of the global prevalence of low back pain,”Arthritis and Rheumatism646202820372012Search in Google Scholar
J. W. Frymoyer, “Back pain and sciata,” The New England Journal of Medicine, vol. 218, no. 5, pp. 291–300, 1988.FrymoyerJ. W.“Back pain and sciata,”The New England Journal of Medicine21852913001988Search in Google Scholar
J. B. Dillane, J. Fry and G. Kalton, “Acute Back Syndrome—A Study from General Practice,” BMJ, vol. 2, no. 5505, pp. 82–84, 1966.DillaneJ. B.FryJ.KaltonG.“Acute Back Syndrome—A Study from General Practice,”BMJ2550582841966Search in Google Scholar
D. K. Resnick, T. F. Choudhri, A. T. Dailey, M. W. Groff, L. Khoo, P. G. Matz, P. Mummaneni, W. C. Watters III, J. Wang, B. C. Walters and M. N. Hadley, “Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: intractable low-back pain without stenosis or spondylolisthesis,” Journal of Neurosurgery: Spine, vol. 2, no. 6, pp. 670–672, 2005.ResnickD. K.ChoudhriT. F.DaileyA. T.GroffM. W.KhooL.MatzP. G.MummaneniP.WattersW. C.IIIWangJ.WaltersB. C.HadleyM. N.“Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: intractable low-back pain without stenosis or spondylolisthesis,”Journal of Neurosurgery: Spine266706722005Search in Google Scholar
B. I. Martin, S. K. Mirza, N. Spina, W. R. Spiker, B. Lawrence and D. S. Brodke, “Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015,” Spine, vol. 44, no. 5, p. 369–376, 2019.MartinB. I.MirzaS. K.SpinaN.SpikerW. R.LawrenceB.BrodkeD. S.“Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015,”Spine4453693762019Search in Google Scholar
R. A. Deyo, D. Cherkin, D. Conrad and E. Volinn, “Cost, controversy, crisis: low back pain and the health of the public,” Annual Review of Public Health, vol. 12, no. 1, p. 141–156, 1991.DeyoR. A.CherkinD.ConradD.VolinnE.“Cost, controversy, crisis: low back pain and the health of the public,”Annual Review of Public Health1211411561991Search in Google Scholar
H. Briggs and P. R. Milligan, “Chip fusion of the low back following exploration of the spinal canal,” The Journal of Bone & Joint Surgery, vol. 26, no. 1, pp. 125–130, 1944.BriggsH.MilliganP. R.“Chip fusion of the low back following exploration of the spinal canal,”The Journal of Bone & Joint Surgery2611251301944Search in Google Scholar
B. M. Ozgur, H. E. Aryan, L. Pimenta and W. R. Taylor, “Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion,” The Spine Journal, vol. 6, no. 4, p. 435–443, 2006.OzgurB. M.AryanH. E.PimentaL.TaylorW. R.“Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion,”The Spine Journal644354432006Search in Google Scholar
G. M. Malham, N. J. Ellis, R. M. Parker, C. M. Blecher, R. White, B. Goss and K. A. Seex, “Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF),” Clinical Spine Surgery, vol. 30, no. 2, pp. 90–98, 2017.MalhamG. M.EllisN. J.ParkerR. M.BlecherC. M.WhiteR.GossB.SeexK. A.“Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF),”Clinical Spine Surgery30290982017Search in Google Scholar
M. Si, J. Guo, J. Hao, X. Zhao, C. A. Randall and H. Wang, “Cold sintered composites consisting of PEEK metal oxides with improved electrical properties via the hybrid interfaces,” Composites. Part B, Engineering, vol. 226, p. 109349, 2021.SiM.GuoJ.HaoJ.ZhaoX.RandallC. A.WangH.“Cold sintered composites consisting of PEEK metal oxides with improved electrical properties via the hybrid interfaces,”Composites. Part B, Engineering2261093492021Search in Google Scholar
E. Massaad, N. Fatima, A. Kiapour, M. Hadzipasic, G. M. Shankar and J. H. Shin, “Polyetheretherketone Versus Titanium Cages for Posterior Lumbar Interbody Fusion: Meta-Analysis and Review of the Literature,” Neurospine, vol. 17, no. 1, pp. 125–135, 2020.MassaadE.FatimaN.KiapourA.HadzipasicM.ShankarG. M.ShinJ. H.“Polyetheretherketone Versus Titanium Cages for Posterior Lumbar Interbody Fusion: Meta-Analysis and Review of the Literature,”Neurospine1711251352020Search in Google Scholar
M.-C. Kim, H.-T. Chung, J.-L. Cho, D.-J. Kim and N.-S. Chung, “Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion,” Journal of Spinal Disorders & Techniques, vol. 26, no. 2, pp. 87–92, 2013.KimM.-C.ChungH.-T.ChoJ.-L.KimD.-J.ChungN.-S.“Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion,”Journal of Spinal Disorders & Techniques26287922013Search in Google Scholar
F. Galbusera, D. Volkheimer, S. Reitmaier, N. Berger-Roscher, A. Kienle and H.-J. Wilke, “Pedicle screw loosening: a clinically relevant complication?,” European Spine Journal, vol. 24, no. 5, pp. 1005–1016, 2015.GalbuseraF.VolkheimerD.ReitmaierS.Berger-RoscherN.KienleA.WilkeH.-J.“Pedicle screw loosening: a clinically relevant complication?,”European Spine Journal245100510162015Search in Google Scholar
C. Herren, R. M. Simons, J. Bredow, S. Oikonomidis, L. Westermann, R. Sobottke, M. J. Scheyerer, M. Pishnamaz, P. Eysel, K. Zarghooni, J. Franklin and J. Siewe, “Posterior Lumbar Interbody Fusion versus Dynamic Hybrid Instrumentation: A Prospective Randomized Clinical Trial,” World Neurosurgery, vol. 117, p. e228–e237, 2018.HerrenC.SimonsR. M.BredowJ.OikonomidisS.WestermannL.SobottkeR.ScheyererM. J.PishnamazM.EyselP.ZarghooniK.FranklinJ.SieweJ.“Posterior Lumbar Interbody Fusion versus Dynamic Hybrid Instrumentation: A Prospective Randomized Clinical Trial,”World Neurosurgery117e228e2372018Search in Google Scholar
D. S. Chun, K. C. Baker and W. K. Hsu, “Lumbar pseudarthrosis: a review of current diagnosis and treatment,” Neurosurgical Focus, vol. 39, no. 4, p. E10, 2015.ChunD. S.BakerK. C.HsuW. K.“Lumbar pseudarthrosis: a review of current diagnosis and treatment,”Neurosurgical Focus394E102015Search in Google Scholar
P. Berjano, F. Langella, M. Damilano, M. Pejrona, J. Buric, M. Ismael, J. H. Villafañe and C. Lamartina, “Fusion rate following extreme lateral lumbar interbody fusion,” European Spine Journal, vol. 24, pp. 369–371, 2015.BerjanoP.LangellaF.DamilanoM.PejronaM.BuricJ.IsmaelM.VillafañeJ. H.LamartinaC.“Fusion rate following extreme lateral lumbar interbody fusion,”European Spine Journal243693712015Search in Google Scholar
B. Meng, J. Bunch, D. Burton and J. Wang, “Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies,” European Spine Journal, vol. 30, no. 1, pp. 22–33, 2021.MengB.BunchJ.BurtonD.WangJ.“Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies,”European Spine Journal30122332021Search in Google Scholar
W. K. Hsu, M. S. Nickoli, J. C. Wang, J. R. Lieberman, H. S. An, S. T. Yoon, J. A. Youssef, D. S. Brodke and C. M. McCullough, “Improving the Clinical Evidence of Bone Graft Substitute Technology in Lumbar Spine Surgery,” Global Spine Journal, vol. 2, no. 4, p. 239–248, 2012.HsuW. K.NickoliM. S.WangJ. C.LiebermanJ. R.AnH. S.YoonS. T.YoussefJ. A.BrodkeD. S.McCulloughC. M.“Improving the Clinical Evidence of Bone Graft Substitute Technology in Lumbar Spine Surgery,”Global Spine Journal242392482012Search in Google Scholar
E. Klineberg, M. Gupta, I. McCarthy and R. Hostin, “Detection of Pseudarthrosis in Adult Spinal Deformity: The Use of Health-related Quality-of-life Outcomes to Predict Pseudarthrosis,” Clinical Spine Surgery, vol. 29, no. 8, pp. 318–322, 2016.KlinebergE.GuptaM.McCarthyI.HostinR.“Detection of Pseudarthrosis in Adult Spinal Deformity: The Use of Health-related Quality-of-life Outcomes to Predict Pseudarthrosis,”Clinical Spine Surgery2983183222016Search in Google Scholar
L. Y. Carreon, S. D. Glassman, J. D. Schwender, B. R. Subach, M. F. Gornet and S. Ohno, “Reliability and accuracy of fine-cut computed tomography scans to determine the status of anterior interbody fusions with metallic cages,” Spine Journal, vol. 8, no. 6, pp. 998–1002, 2018.CarreonL. Y.GlassmanS. D.SchwenderJ. D.SubachB. R.GornetM. F.OhnoS.“Reliability and accuracy of fine-cut computed tomography scans to determine the status of anterior interbody fusions with metallic cages,”Spine Journal8699810022018Search in Google Scholar
M. Mujeeb-U-Rahman, D. Adalian, C.-F. Chang and A. Scherer, “Optical power transfer and communication methods for wireless implantable sensing platforms,” Journal of Biomedical Optics, vol. 20, no. 9, pp. 095012:1 – 095012:9, 2015.Mujeeb-U-RahmanM.AdalianD.ChangC.-F.SchererA.“Optical power transfer and communication methods for wireless implantable sensing platforms,”Journal of Biomedical Optics209095012:1095012:92015Search in Google Scholar
Anindya Nag, Subhas Chandra Mukhopadhyay, Flexible Sensors for Energy-Harvesting Applications, Springer-Nature, Vol. 42, 2022.NagAnindyaMukhopadhyaySubhas ChandraFlexible Sensors for Energy-Harvesting ApplicationsSpringer-Nature422022Search in Google Scholar
P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathé, P. Porcu, S. Cosnier and R. Haverkamp, “A Glucose BioFuel Cell Implanted in Rats,” PLoS ONE, vol. 5, no. 5, p. e10476, 2010.CinquinP.GondranC.GiroudF.MazabrardS.PellissierA.BoucherF.AlcarazJ.-P.GorgyK.LenouvelF.MathéS.PorcuP.CosnierS.HaverkampR.“A Glucose BioFuel Cell Implanted in Rats,”PLoS ONE55e104762010Search in Google Scholar
B. Shi, Z. Li and Y. Fan, “Implantable Energy-Harvesting Devices,” Advanced Materials, vol. 30, no. 44, pp. 1801511–1801529, 2018.ShiB.LiZ.FanY.“Implantable Energy-Harvesting Devices,”Advanced Materials3044180151118015292018Search in Google Scholar
H. A. Owida, J. I. Al-Nabulsi, N. M. Turab, F. Alnaimat, H. Rababah, M. Y. Shakour, C. Galli and C. Galli, “Autocharging Techniques for Implantable Medical Applications,” International Journal of Biomaterials, vol. 2021, pp. 1–7, 2021.OwidaH. A.Al-NabulsiJ. I.TurabN. M.AlnaimatF.RababahH.ShakourM. Y.GalliC.GalliC.“Autocharging Techniques for Implantable Medical Applications,”International Journal of Biomaterials2021172021Search in Google Scholar
D. H. Kim, H. J. Shin, H. Lee, C. K. Jeong, H. Park, G. Hwang, H. Lee, D. J. Joe, J. H. Han, S. H. Lee, J. Kim, B. Joung and K. J. Lee, “In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters,” Advanced Function Materials, vol. 27, no. 25, p. 1700341, 2017.KimD. H.ShinH. J.LeeH.JeongC. K.ParkH.HwangG.LeeH.JoeD. J.HanJ. H.LeeS. H.KimJ.JoungB.LeeK. J.“In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters,”Advanced Function Materials272517003412017Search in Google Scholar
O. V. Gorskii, “Potential Power Supply Methods for Implanted Devices,” Biomedical Engineering, vol. 52, no. 3, p. 204–209, 2018.GorskiiO. V.“Potential Power Supply Methods for Implanted Devices,”Biomedical Engineering5232042092018Search in Google Scholar
S. R. Khan, S. K. Pavuluri, G. Cummins and M. P. Y. Desmulliez, “Wireless Power Transfer Techniques for Implantable Medical Devices: A Review,” Sensors, vol. 20, no. 12, pp. 1–58, 2020.KhanS. R.PavuluriS. K.CumminsG.DesmulliezM. P. Y.“Wireless Power Transfer Techniques for Implantable Medical Devices: A Review,”Sensors20121582020Search in Google Scholar
A. B. Amar, A. B. Kouki and H. Cao, “Power approaches for implantable medical devices,” Sensors, vol. 15, no. 11, p. 28889–28914, 2015.AmarA. B.KoukiA. B.CaoH.“Power approaches for implantable medical devices,”Sensors151128889289142015Search in Google Scholar
Chinthaka Pasan Gooneratne, Subhas Mukhopadhyay, Bodong Li, Guodong Zhan, Arturo Magana-Mora, Timothy Eric Moellendick, Triboelectric energy harvesting with pipe-in-pipe structure, US Patent, number 11,421,513, 2022.GooneratneChinthaka PasanMukhopadhyaySubhasLiBodongZhanGuodongMagana-MoraArturoMoellendickTimothy EricTriboelectric energy harvesting with pipe-in-pipe structureUS Patent, number 11,421,513,2022Search in Google Scholar
J. Li, L. Kang, Y. Long, H. Wei, Y. Yu, Y. Wang, C. A. Ferreira, G. Yao, Z. Zhang, C. Carlos, L. German, X. Lan, W. Cai and X. Wang, “Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting,” ACS Applied Materials & Interfaces, vol. 10, no. 49, pp. 42030–42038, 2018.LiJ.KangL.LongY.WeiH.YuY.WangY.FerreiraC. A.YaoG.ZhangZ.CarlosC.GermanL.LanX.CaiW.WangX.“Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting,”ACS Applied Materials & Interfaces104942030420382018Search in Google Scholar
C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung and K. J. Lee, “Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly,” Nano Letters, vol. 14, no. 12, p. 7031–7038, 2014.JeongC. K.BaekK. M.NiuS.NamT. W.HurY. H.ParkD. Y.HwangG.-T.ByunM.WangZ. L.JungY. S.LeeK. J.“Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly,”Nano Letters1412703170382014Search in Google Scholar
S. El Ichi-Ribault, J.-P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin, J. Boutonnat, P. Cinquin, A. Zebda and D. K. Martin, “Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months,” Electrochimica Acta, vol. 269, pp. 360–366, 2018.El Ichi-RibaultS.AlcarazJ.-P.BoucherF.BoutaudB.DalmolinR.BoutonnatJ.CinquinP.ZebdaA.MartinD. K.“Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months,”Electrochimica Acta2693603662018Search in Google Scholar
A. Pfenniger, M. Jonsson, A. Zurbuchen, V. M. Koch and R. Vogel, “Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself,” Annals of Biomedical Engineering, vol. 41, no. 11, p. 2248–2263, 2013.PfennigerA.JonssonM.ZurbuchenA.KochV. M.VogelR.“Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself,”Annals of Biomedical Engineering4111224822632013Search in Google Scholar
A. Haeberlin, A. Zurbuchen, J. Schaerer, J. Wagner, S. Walpen, C. Huber, H. Haeberlin, J. Fuhrer and R. Vogel, “Successful pacing using a batteryless sunlight-powered pacemaker,” Europace, vol. 16, no. 10, p. 1534–1539, 2014.HaeberlinA.ZurbuchenA.SchaererJ.WagnerJ.WalpenS.HuberC.HaeberlinH.FuhrerJ.VogelR.“Successful pacing using a batteryless sunlight-powered pacemaker,”Europace1610153415392014Search in Google Scholar
K. Goto, T. Nakagawa, O. Nakamura and S. Kawata, “An Implantable Power Supply with an Optically Rechargeable Lithium Battery,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 7, p. 830–833, 2001.GotoK.NakagawaT.NakamuraO.KawataS.“An Implantable Power Supply with an Optically Rechargeable Lithium Battery,”IEEE Transactions on Biomedical Engineering4878308332001Search in Google Scholar
J. Kim, J. Seo, D. Jung, T. Lee, H. Ju, J. Han, N. Kim, J. Jeong, S. Cho, J. H. Seol and J. Lee, “Active photonic wireless power transfer into live tissues,” Proceedings of the National Academy of Sciences - PNAS, vol. 117, no. 29, p. 16856–16863, 2020.KimJ.SeoJ.JungD.LeeT.JuH.HanJ.KimN.JeongJ.ChoS.SeolJ. H.LeeJ.“Active photonic wireless power transfer into live tissues,”Proceedings of the National Academy of Sciences - PNAS1172916856168632020Search in Google Scholar
M. P. Theodoridis, “Effective Capacitive Power Transfer,” IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4906–4913, 2012.TheodoridisM. P.“Effective Capacitive Power Transfer,”IEEE Transactions on Power Electronics2712490649132012Search in Google Scholar
A. M. Sodagar and P. Amiri, “Capacitive coupling for power and data telemetry to implantable biomedical microsystems,” 2009 4th International IEEE/EMBS Conference on Neural Engineering, 2009, pp. 411–414, 2009.SodagarA. M.AmiriP.“Capacitive coupling for power and data telemetry to implantable biomedical microsystems,”2009 4th International IEEE/EMBS Conference on Neural Engineering, 20094114142009Search in Google Scholar
K. Detka and K. Gorecki, “Wireless Power Transfer - A Review,” Energies, vol. 15, no. 19, p. 7236, 2022.DetkaK.GoreckiK.“Wireless Power Transfer - A Review,”Energies151972362022Search in Google Scholar
S. Nag, A. Koruprolu, S. M. Saikh, R. Erfani and P. Mohseni, “Auto-Resonant Tuning for Capacitive Power and Data Telemetry Using Flexible Patches,” IEEE Transactions on Circuits and Systems. II, Express Briefs, vol. 67, no. 10, p. 1804–1808, 2020.NagS.KoruproluA.SaikhS. M.ErfaniR.MohseniP.“Auto-Resonant Tuning for Capacitive Power and Data Telemetry Using Flexible Patches,”IEEE Transactions on Circuits and Systems. II, Express Briefs6710180418082020Search in Google Scholar
A. Hassan, C. Sawma, M. Hasanuzzaman, B. Gosselin and M. Sawan, “Spatial carrier position modulation based multichannel capacitive link for bioelectronic implants,” 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4, 2015.HassanA.SawmaC.HasanuzzamanM.GosselinB.SawanM.“Spatial carrier position modulation based multichannel capacitive link for bioelectronic implants,”2015 IEEE Biomedical Circuits and Systems Conference (BioCAS)142015Search in Google Scholar
G. L. Barbruni, P. M. Ros, D. Demarchi, S. Carrara and D. Ghezzi, “Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 6, p. 1160–1178, 2020.BarbruniG. L.RosP. M.DemarchiD.CarraraS.GhezziD.“Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review,”IEEE Transactions on Biomedical Circuits and Systems146116011782020Search in Google Scholar
J. C. Schuder, “Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960,” Artificial Organs, vol. 26, no. 11, pp. 909–915, 2002.SchuderJ. C.“Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960,”Artificial Organs26119099152002Search in Google Scholar
M. C. Edwards, J. M. Hoy, S. I. FitzGibbon and P. J. Murray, “Monitoring with microchips: Microchip-automated doors as a potential novel method for tracking the survival of released Northern Brown Bandicoots,” Ecological Management & Restoration, vol. 21, no. 3, p. 254–256, 2020.EdwardsM. C.HoyJ. M.FitzGibbonS. I.MurrayP. J.“Monitoring with microchips: Microchip-automated doors as a potential novel method for tracking the survival of released Northern Brown Bandicoots,”Ecological Management & Restoration2132542562020Search in Google Scholar
M. Kiani, U.-M. Jow and M. Ghovanloo, “Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 6, p. 579–591, 2011.KianiM.JowU.-M.GhovanlooM.“Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission,”IEEE Transactions on Biomedical Circuits and Systems565795912011Search in Google Scholar
U.-M. Jow and M. Ghovanloo, “Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3, pp. 193–202, 2007.JowU.-M.GhovanlooM.“Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission,”IEEE Transactions on Biomedical Circuits and Systems131932022007Search in Google Scholar
A. Denisov and E. Yeatman, “Ultrasonic vs. Inductive Power Delivery for Miniature Biomedical Implants,” 2010 International Conference on Body Sensor Networks, pp. 84–89, 2010.DenisovA.YeatmanE.“Ultrasonic vs. Inductive Power Delivery for Miniature Biomedical Implants,”2010 International Conference on Body Sensor Networks84892010Search in Google Scholar
G. Lazzi, “Thermal effects of bioimplants,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 5, pp. 75–81, 2005.LazziG.“Thermal effects of bioimplants,”IEEE Engineering in Medicine and Biology Magazine24575812005Search in Google Scholar
S. A. Mirbozorgi, P. Yeon and M. Ghovanloo, “Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 3, pp. 692–702, 2017.MirbozorgiS. A.YeonP.GhovanlooM.“Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants,”IEEE Transactions on Biomedical Circuits and Systems1136927022017Search in Google Scholar
M. Baker and R. Sarpeshkar, “Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 1, p. 28–38, 2007.BakerM.SarpeshkarR.“Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems,”IEEE Transactions on Biomedical Circuits and Systems1128382007Search in Google Scholar
P. Feng, P. Yeon, Y. Cheng, M. Ghovanloo and T. G. Constandinou, “Chip-Scale Coils for Millimeter-Sized Bio-Implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 5, p. 1088–1099, 2018.FengP.YeonP.ChengY.GhovanlooM.ConstandinouT. G.“Chip-Scale Coils for Millimeter-Sized Bio-Implants,”IEEE Transactions on Biomedical Circuits and Systems125108810992018Search in Google Scholar
S. R. Khan, S. K. Pavuluri, G. Cummins and M. P. Y. Desmulliez, “Miniaturized 3-D Cross-Type Receiver for Wirelessly Powered Capsule Endoscopy,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, p. 1985–1993, 2019.KhanS. R.PavuluriS. K.CumminsG.DesmulliezM. P. Y.“Miniaturized 3-D Cross-Type Receiver for Wirelessly Powered Capsule Endoscopy,”IEEE Transactions on Microwave Theory and Techniques675198519932019Search in Google Scholar
B. Lenaerts and R. Puers, “An inductive power link for a wireless endoscope,” Biosensors & Bioelectronics, vol. 22, no. 7, p. 1390–1395, 2007.LenaertsB.PuersR.“An inductive power link for a wireless endoscope,”Biosensors & Bioelectronics227139013952007Search in Google Scholar
S. Ozeri, D. Shmilovitz, S. Singer and C.-C. Wang, “Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter,” Ultrasonics, vol. 50, no. 7, pp. 666–674, 2010.OzeriS.ShmilovitzD.SingerS.WangC.-C.“Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter,”Ultrasonics5076666742010Search in Google Scholar
H. Basaeri, D. B. Christensen and S. Roundy, “A review of acoustic power transfer for bio-medical implants,” Smart Materials and Structures, vol. 25, no. 12, p. 123001, 2016.BasaeriH.ChristensenD. B.RoundyS.“A review of acoustic power transfer for bio-medical implants,”Smart Materials and Structures25121230012016Search in Google Scholar
S. Ozeri and D. Shmilovitz, “Ultrasonic transcutaneous energy transfer for powering implanted devices,” Ultrasonics, vol. 50, no. 6, pp. 556–566, 2010.OzeriS.ShmilovitzD.“Ultrasonic transcutaneous energy transfer for powering implanted devices,”Ultrasonics5065565662010Search in Google Scholar
M. Meng and M. Kiani, “Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 1, pp. 98–107, 2017.MengM.KianiM.“Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants,”IEEE Transactions on Biomedical Circuits and Systems111981072017Search in Google Scholar
C. Wang, Q. Shi and C. Lee, “Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators,” Nanomaterials, vol. 12, no. 8, p. 1366, 2022.WangC.ShiQ.LeeC.“Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators,”Nanomaterials12813662022Search in Google Scholar
S. Arra, J. Leskinen, J. Heikkila and J. Vanhala, “Ultrasonic Power and Data Link for Wireless Implantable Applications,” 2007 2nd International Symposium on Wireless Pervasive Computing, 2007.ArraS.LeskinenJ.HeikkilaJ.VanhalaJ.“Ultrasonic Power and Data Link for Wireless Implantable Applications,”2007 2nd International Symposium on Wireless Pervasive Computing2007Search in Google Scholar
B. L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs, S. Menegatti and M. A. Daniele, “Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications,” Advanced Healthcare Materials, vol. 10, no. 17, p. 2100986, 2021.TurnerB. L.SenevirathneS.KilgourK.McArtD.BiggsM.MenegattiS.DanieleM. A.“Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications,”Advanced Healthcare Materials101721009862021Search in Google Scholar
B. M. G. Rosa and G.-Z. Yang, “Ultrasound Powered Implants: Design, Performance Considerations and Simulation Results,” Scientific Reports, vol. 10, no. 1, p. 6537, 2020.RosaB. M. G.YangG.-Z.“Ultrasound Powered Implants: Design, Performance Considerations and Simulation Results,”Scientific Reports10165372020Search in Google Scholar
C. Chen, Z. Wen, J. Shi, X. Jian, P. Li, J. T. W. Yeow and X. Sun, “Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication,” Nature Communications, vol. 11, no. 1, p. 4143, 2020.ChenC.WenZ.ShiJ.JianX.LiP.YeowJ. T. W.SunX.“Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication,”Nature Communications11141432020Search in Google Scholar
S. Sherrit, M. Badescu, X. Bao, Y. Bar-Cohen and Z. Chang, “Efficient electromechanical network model for wireless acoustic-electric feed-throughs,” SPIE, vol. 5758, p. 362–372, 2005.SherritS.BadescuM.BaoX.Bar-CohenY.ChangZ.“Efficient electromechanical network model for wireless acoustic-electric feed-throughs,”SPIE57583623722005Search in Google Scholar
M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti and J. Rödel, “BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives,” Applied Physics Reviews, vol. 4, no. 4, p. 041305, 2017.AcostaM.NovakN.RojasV.PatelS.VaishR.KoruzaJ.RossettiG. A.RödelJ.“BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives,”Applied Physics Reviews440413052017Search in Google Scholar
J. Charthad, M. J. Weber, T. C. Chang and A. Arbabian, “A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link,” IEEE Journal of Solid-State Circuits, vol. 50, no. 8, p. 1741–1753, 2015.CharthadJ.WeberM. J.ChangT. C.ArbabianA.“A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link,”IEEE Journal of Solid-State Circuits508174117532015Search in Google Scholar
C. Li, K.-F. Un, P.-i. Mak, Y. Chen, J.-M. Munoz-Ferreras, Z. Yang and R. Gomez-Garcia, “Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 2, p. 165–177, 2018.LiC.UnK.-F.MakP.-i.ChenY.Munoz-FerrerasJ.-M.YangZ.Gomez-GarciaR.“Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications,”IEEE Journal on Emerging and Selected Topics in Circuits and Systems821651772018Search in Google Scholar
M. J. Weber, Y. Yoshihara, A. Sawaby, J. Charthad, T. C. Chang and A. Arbabian, “A Miniaturized Single-Transducer Implantable Pressure Sensor With Time-Multiplexed Ultrasonic Data and Power Links,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, p. 1089–1101, 2018.WeberM. J.YoshiharaY.SawabyA.CharthadJ.ChangT. C.ArbabianA.“A Miniaturized Single-Transducer Implantable Pressure Sensor With Time-Multiplexed Ultrasonic Data and Power Links,”IEEE Journal of Solid-State Circuits534108911012018Search in Google Scholar
R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology’,” Science (American Association for the Advancement of Science), vol. 365, no. 6452, p. 491–494, 2019.HinchetR.YoonH.-J.RyuH.KimM.-K.ChoiE.-K.KimD.-S.KimS.-W.“Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology’,”Science (American Association for the Advancement of Science)36564524914942019Search in Google Scholar
G. Jiang, “Design challenges of implantable pressure monitoring system,” Frontiers in Neuroscience, vol. 4, p. 29, 2010.JiangG.“Design challenges of implantable pressure monitoring system,”Frontiers in Neuroscience4292010Search in Google Scholar
T. Dong, Y. Gu, T. Liu and M. Pecht, “Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications,” Sensors and Actuators A: Physical, vol. 326, p. 112720, 2021.DongT.GuY.LiuT.PechtM.“Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications,”Sensors and Actuators A: Physical3261127202021Search in Google Scholar
N. Arfah, A. H. M. Z. Alam and S. Khan, “Capacitance-to-voltage converter for capacitance measuring system,” 2011 4th International Conference on Mechatronics (ICOM), pp. 1–4, 2011.ArfahN.AlamA. H. M. Z.KhanS.“Capacitance-to-voltage converter for capacitance measuring system,”2011 4th International Conference on Mechatronics (ICOM)142011Search in Google Scholar
C. Zhang, R. Gallichan, D. M. Budgett and D. McCormick, “A capacitive pressure sensor interface ic with wireless power and data transfer,” Micromachines, vol. 11, no. 10, p. 897, 2020.ZhangC.GallichanR.BudgettD. M.McCormickD.“A capacitive pressure sensor interface ic with wireless power and data transfer,”Micromachines11108972020Search in Google Scholar
Z. Ma, Y. Zhang, K. Zhang, H. Deng and Q. Fu, “Recent progress in flexible capacitive sensors: Structures and properties,” Nano Materials Science, 2022.MaZ.ZhangY.ZhangK.DengH.FuQ.“Recent progress in flexible capacitive sensors: Structures and properties,”Nano Materials Science2022Search in Google Scholar
M. Cicalini, M. Piotto, P. Bruschi and M. Dei, “Design of a Capacitance-to-Digital Converter Based on Iterative Delay-Chain Discharge in 180 nm CMOS Technology,” Sensors, vol. 22, no. 1, p. 121, 2021.CicaliniM.PiottoM.BruschiP.DeiM.“Design of a Capacitance-to-Digital Converter Based on Iterative Delay-Chain Discharge in 180 nm CMOS Technology,”Sensors2211212021Search in Google Scholar
R. Wei, W. Wang, X. Xiao and Q. Chen, “A Low-Power Delta-Sigma Capacitance-to-Digital Converter for Capacitive Sensors,” IEEE Access, vol. 7, p. 78281–78288, 2019.WeiR.WangW.XiaoX.ChenQ.“A Low-Power Delta-Sigma Capacitance-to-Digital Converter for Capacitive Sensors,”IEEE Access778281782882019Search in Google Scholar
Prashanth V. and George B., “An Improved Capacitance-to-digital Converter for Leaky Capacitive sensors”, IEEE Sensors Journal, vol. 15, no. 11, pp. 6238–6247, Nov. 2015.PrashanthV.GeorgeB.“An Improved Capacitance-to-digital Converter for Leaky Capacitive sensors”IEEE Sensors Journal151162386247Nov.2015Search in Google Scholar
Sreenath V. and George B., “An Improved Closed-Loop Switched Capacitor Capacitance to Frequency Converter and Its Evaluation”, IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 5, pp. 1028–1035, May 2018.SreenathV.GeorgeB.“An Improved Closed-Loop Switched Capacitor Capacitance to Frequency Converter and Its Evaluation”IEEE Transactions on Instrumentation and Measurement67510281035May2018Search in Google Scholar
B. Lee and M. Ghovanloo, “An Overview of Data Telemetry in Inductively Powered Implantable Biomedical Devices,” IEEE Communications Magazine, vol. 57, no. 2, p. 74–80, 2019.LeeB.GhovanlooM.“An Overview of Data Telemetry in Inductively Powered Implantable Biomedical Devices,”IEEE Communications Magazine57274802019Search in Google Scholar
S. Ha, C. Kim, J. Park, S. Joshi and G. Cauwenberghs, “Energy Recycling Telemetry IC With Simultaneous 11.5 mW Power and 6.78 Mb/s Backward Data Delivery Over a Single 13.56 MHz Inductive Link,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, p. 2664–2678, 2016.HaS.KimC.ParkJ.JoshiS.CauwenberghsG.“Energy Recycling Telemetry IC With Simultaneous 11.5 mW Power and 6.78 Mb/s Backward Data Delivery Over a Single 13.56 MHz Inductive Link,”IEEE Journal of Solid-State Circuits5111266426782016Search in Google Scholar
Vivek AS Ramakrishna, Uphar Chamoli, Subhas C Mukhopadhyay, Ashish D Diwan, B Gangadhara Prusty, Measuring compressive loads on a ‘smart’lumbar interbody fusion cage: Proof of concept, Journal of Biomechanics, Elsevier, vol. 147, pp. 111440, 2023.RamakrishnaVivek ASChamoliUpharMukhopadhyaySubhas CDiwanAshish DGangadhara PrustyBMeasuring compressive loads on a ‘smart’lumbar interbody fusion cage: Proof of conceptJournal of Biomechanics, Elsevier1471114402023Search in Google Scholar
A. Ebrazeh and P. Mohseni, “30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 3, p. 362–369, 2015.EbrazehA.MohseniP.“30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link,”IEEE Transactions on Biomedical Circuits and Systems933623692015Search in Google Scholar
J. M. Anderson, “Inflammatory Response to Implants,” ASAIO Journal, vol. 34, no. 2, p. 101–107, 1988.AndersonJ. M.“Inflammatory Response to Implants,”ASAIO Journal3421011071988Search in Google Scholar
P. D. Wolf and W. M. Reichert, “Thermal Considerations for the Design of an Implanted Cortical Brain–Machine Interface (BMI),” in Indwelling Neural Implants, CRC Press, 2008, pp. 81–104.WolfP. D.ReichertW. M.“Thermal Considerations for the Design of an Implanted Cortical Brain–Machine Interface (BMI),”inIndwelling Neural ImplantsCRC Press200881104Search in Google Scholar
C. R. Davies, F. Fukumura, K. Fukamachi, K. Muramoto, S. C. Himley, A. Massiello, J.-F. Chen and H. Harasaki, “Adaptation of tissue to a chronic heat load,” ASAIO Journal, vol. 40, no. 3, p. M514–M517, 1994.DaviesC. R.FukumuraF.FukamachiK.MuramotoK.HimleyS. C.MassielloA.ChenJ.-F.HarasakiH.“Adaptation of tissue to a chronic heat load,”ASAIO Journal403M514M5171994Search in Google Scholar
D. Jiang, B. Shi, H. Ouyang, Y. Fan, Z. L. Wang and Z. Li, “Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics,” ACS Nano, vol. 14, no. 6, p. 6436–6448, 2020.JiangD.ShiB.OuyangH.FanY.WangZ. L.LiZ.“Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics,”ACS Nano146643664482020Search in Google Scholar
K. N. Bocan and E. Sejdić, “Adaptive transcutaneous power transfer to implantable devices: A state of the art review,” Sensors, vol. 16, no. 3, p. 393, 2016.BocanK. N.SejdićE.“Adaptive transcutaneous power transfer to implantable devices: A state of the art review,”Sensors1633932016Search in Google Scholar
T. Laube, C. Brockmann, R. Buss, C. Lau, K. Höck, N. Stawski, T. Stieglitz, H. A. Richter and H. Schilling, “Optical energy transfer for intraocular microsystems studied in rabbits,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 8, p. 661–667, 2004.LaubeT.BrockmannC.BussR.LauC.HöckK.StawskiN.StieglitzT.RichterH. A.SchillingH.“Optical energy transfer for intraocular microsystems studied in rabbits,”Graefe’s Archive for Clinical and Experimental Ophthalmology24286616672004Search in Google Scholar
X. Zhuang, A. Nikoozadeh, M. A. Beasley, G. G. Yaralioglu, B. T. Khuri-Yakub and B. L. Pruitt, “Biocompatible coatings for CMUTs in a harsh, aqueous environment,” Journal of Micromechanics and Microengineering, vol. 17, no. 5, p. 994–1001, 2007.ZhuangX.NikoozadehA.BeasleyM. A.YaraliogluG. G.Khuri-YakubB. T.PruittB. L.“Biocompatible coatings for CMUTs in a harsh, aqueous environment,”Journal of Micromechanics and Microengineering17599410012007Search in Google Scholar
D. S. Lee, S. J. Kim, E. B. Kwon, C. W. Park, S. M. Jun, B. Choi and S. W. Kim, “Comparison of in vivo biocompatibilities between parylene-C and polydimethylsiloxane for implantable microelectronic devices,” Bulletin of Materials Science, vol. 36, no. 6, p. 1127–1132, 2013.LeeD. S.KimS. J.KwonE. B.ParkC. W.JunS. M.ChoiB.KimS. W.“Comparison of in vivo biocompatibilities between parylene-C and polydimethylsiloxane for implantable microelectronic devices,”Bulletin of Materials Science366112711322013Search in Google Scholar
A. Ibrahim, M. Meng and M. Kiani, “A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants,” IEEE Sensors Journal, vol. 18, no. 9, p. 3813–3826, 2018.IbrahimA.MengM.KianiM.“A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants,”IEEE Sensors Journal189381338262018Search in Google Scholar
M. O. Culjat, D. Goldenberg, P. Tewari and R. S. Singh, “A Review of Tissue Substitutes for Ultrasound Imaging,” Ultrasound in Medicine & Biology, vol. 36, no. 6, p. 861–873, 2010.CuljatM. O.GoldenbergD.TewariP.SinghR. S.“A Review of Tissue Substitutes for Ultrasound Imaging,”Ultrasound in Medicine & Biology3668618732010Search in Google Scholar
Silicon Labs, “EFM8BB52 Data Sheet,” Silicon Labs, 2021. [Online]. Available: https://www.silabs.com/documents/public/data-sheets/efm8bb52-data-sheet.pdf. [Accessed 8 June 2023].Silicon Labs“EFM8BB52 Data Sheet,”Silicon Labs2021[Online]. Available: https://www.silabs.com/documents/public/data-sheets/efm8bb52-data-sheet.pdf. [Accessed 8 June 2023].Search in Google Scholar
Amphenol, “P122 High Silicon Pressure Sensor Die,” Amphenol, 2018. [Online]. Available: https://www.amphenol-sensors.com/en/novasensor/pressure-sensor-die/3166-p122. [Accessed 11 November 2022].Amphenol“P122 High Silicon Pressure Sensor Die,”Amphenol2018[Online]. Available: https://www.amphenol-sensors.com/en/novasensor/pressure-sensor-die/3166-p122. [Accessed 11 November 2022].Search in Google Scholar
NuVasive, “Coroent Thoracolumbar System Patient Information Leaflet,” NuVasive, 1 December 2021. [Online]. Available: https://www.nuvasive.com/wp-content/uploads/2021/11/CoRoent-Thoracolumbar-System-Patient-Information-Leaflet_Final.pdf. [Accessed 12 June 2023].NuVasive“Coroent Thoracolumbar System Patient Information Leaflet,”NuVasive1December2021[Online]. Available: https://www.nuvasive.com/wp-content/uploads/2021/11/CoRoent-Thoracolumbar-System-Patient-Information-Leaflet_Final.pdf. [Accessed 12 June 2023].Search in Google Scholar
PTC, “Creo Parametric 3D Modelling Software,” PTC, 2023. [Online]. Available: https://www.ptc.com/en/products/creo/parametric. [Accessed 12 June 2023].PTC“Creo Parametric 3D Modelling Software,”PTC2023[Online]. Available: https://www.ptc.com/en/products/creo/parametric. [Accessed 12 June 2023].Search in Google Scholar
Chinthaka Pasan Gooneratne, Subhas Mukhopadhyay, Bodong Li, Guodong Zhan, Arturo Magana-Mora and Timothy Eric Moellendick, Triboelectric energy harvesting with pipe-in-pipe structure, US Patent 11,421,513, 2022.GooneratneChinthaka PasanMukhopadhyaySubhasLiBodongZhanGuodongMagana-MoraArturoMoellendickTimothy EricTriboelectric energy harvesting with pipe-in-pipe structureUS Patent 11,421,513,2022Search in Google Scholar
Keysight Technologies, “U1730C Series Handheld LCR Meters,” Keysight Technologies, 18 October 2018. [Online]. Available: https://www.keysight.com/au/en/assets/7018-02950/data-sheets/5990-7778.pdf. [Accessed 12 June 2023].Keysight Technologies“U1730C Series Handheld LCR Meters,”Keysight Technologies18October2018[Online]. Available: https://www.keysight.com/au/en/assets/7018-02950/data-sheets/5990-7778.pdf. [Accessed 12 June 2023].Search in Google Scholar
Onsemi, “1N5820, 1N5821, 1N5822 - Axial Lead Rectifiers,” Onsemi, December 2007. [Online]. Available: https://www.onsemi.com/pdf/data-sheet/1n5820-d.pdf. [Accessed 10 June 2023].Onsemi“1N5820, 1N5821, 1N5822 - Axial Lead Rectifiers,”OnsemiDecember2007[Online]. Available: https://www.onsemi.com/pdf/data-sheet/1n5820-d.pdf. [Accessed 10 June 2023].Search in Google Scholar
J. Harries, T. H. Jochimsen, T. Scholz, T. Schlender, H. Barthel, O. Sabri and B. Sattler, “A realistic phantom of the human head for PET-MRI,” EJNMMI Physics, vol. 7, no. 1, p. 52, 2020.HarriesJ.JochimsenT. H.ScholzT.SchlenderT.BarthelH.SabriO.SattlerB.“A realistic phantom of the human head for PET-MRI,”EJNMMI Physics71522020Search in Google Scholar
Nguyen Thi Phuoc Van, Syed Faraz Hasan, Xiang Gui, Subhas Mukhopadhyay, Hung Tran, Three-step two-way decode and forward relay with energy harvesting, IEEE Communications Letters, Vol. 21, Issue 4, pp. 857–860, 2016.Phuoc VanNguyen ThiHasanSyed FarazGuiXiangMukhopadhyaySubhasTranHungThree-step two-way decode and forward relay with energy harvestingIEEE Communications Letters2148578602016Search in Google Scholar
Vivek AS Ramakrishna, Uphar Chamoli, Alessandro G Larosa, Subhas C Mukhopadhyay, B Gangadhara Prusty, Ashish D Diwan, A biomechanical comparison of posterior fixation approaches in lumbar fusion using computed tomography based lumbosacral spine modelling, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, SAGE Publishing, vol. 237, Issue 2, pp. 243–253, 2023.RamakrishnaVivek ASChamoliUpharLarosaAlessandro GMukhopadhyaySubhas CGangadhara PrustyBDiwanAshish DA biomechanical comparison of posterior fixation approaches in lumbar fusion using computed tomography based lumbosacral spine modellingProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, SAGE Publishing23722432532023Search in Google Scholar
H. E. Jaramillo, L. Gómez and J. J. García, “A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs,” Acta of Bioengineering and Biomechanics, vol. 17, no. 2, p. 15–24, 2015.JaramilloH. E.GómezL.GarcíaJ. J.“A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs,”Acta of Bioengineering and Biomechanics17215242015Search in Google Scholar
Texas Instruments, “TMP117 High-Accuracy, Low-Power, Digital Temperature Sensor With SMBus™ - and I2C-Compatible Interface,” Texas Instruments, September 2022. [Online]. Available: https://www.ti.com/lit/ds/symlink/tmp117.pdf?ts=1668131690221. [Accessed 11 November 2022].Texas Instruments“TMP117 High-Accuracy, Low-Power, Digital Temperature Sensor With SMBus™ - and I2C-Compatible Interface,”Texas InstrumentsSeptember2022[Online]. Available: https://www.ti.com/lit/ds/symlink/tmp117.pdf?ts=1668131690221. [Accessed 11 November 2022].Search in Google Scholar
Core Electronics, “PiicoDev Precision Temperature Sensor TMP117,” Core Electronics, 2023. [Online]. Available: https://core-electronics.com.au/piicodev-precision-temperature-sensor-tmp117.html. [Accessed 6 June 2023].Core Electronics“PiicoDev Precision Temperature Sensor TMP117,”Core Electronics2023[Online]. Available: https://core-electronics.com.au/piicodev-precision-temperature-sensor-tmp117.html. [Accessed 6 June 2023].Search in Google Scholar
Python, “Python Programing Language,” Python, 2023. [Online]. Available: https://www.python.org/. [Accessed 6 June 2023].Python“Python Programing Language,”Python2023[Online]. Available: https://www.python.org/. [Accessed 6 June 2023].Search in Google Scholar
PuTTY, “PuTTY Program,” PuTTY, 2023. [Online]. Available: https://www.putty.org/. [Accessed 6 June 2023].PuTTY“PuTTY Program,”PuTTY2023[Online]. Available: https://www.putty.org/. [Accessed 6 June 2023].Search in Google Scholar
Raspberry Pi, “Raspberry Pi Zero W,” Raspberry Pi, 2023. [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-zero-w/. [Accessed 6 June 2023].Raspberry Pi“Raspberry Pi Zero W,”Raspberry Pi2023[Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-zero-w/. [Accessed 6 June 2023].Search in Google Scholar
J. P. Sanjurjo, E. Prefasi, C. Buffa and R. Gaggl, “A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications,” Sensors, vol. 17, no. 6, p. 1312, 2017.SanjurjoJ. P.PrefasiE.BuffaC.GagglR.“A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications,”Sensors17613122017Search in Google Scholar
Z. Tan, H. Jiang, H. Zhang, X. Tang, H. Xin and S. Nihtianov, “Power-Efficiency Evolution of Capacitive Sensor Interfaces,” IEEE Sensors Journal, vol. 21, no. 11, p. 12457–12468, 2021.TanZ.JiangH.ZhangH.TangX.XinH.NihtianovS.“Power-Efficiency Evolution of Capacitive Sensor Interfaces,”IEEE Sensors Journal211112457124682021Search in Google Scholar
Rectron Semiconductor, “Single-Phase Silicon Bridge Rectifier BR1005 Thru BR1010,” Rectron Semiconductor, May 2001. [Online]. Available: https://www.jaycar.com.au/medias/sys_master/images/images/9965579567134/ZR1320-dataSheetMain.pdf. [Accessed 6 June 2023].Rectron Semiconductor“Single-Phase Silicon Bridge Rectifier BR1005 Thru BR1010,”Rectron SemiconductorMay2001[Online]. Available: https://www.jaycar.com.au/medias/sys_master/images/images/9965579567134/ZR1320-dataSheetMain.pdf. [Accessed 6 June 2023].Search in Google Scholar
F. Durmus and S. Karagol, “Mutual Inductance Calculation for Planar Square and Hexagonal Coils,” Arabian Journal for Science and Engineering, vol. 47, no. 3, p. 3409–3420, 2022.DurmusF.KaragolS.“Mutual Inductance Calculation for Planar Square and Hexagonal Coils,”Arabian Journal for Science and Engineering473340934202022Search in Google Scholar
Vivek AS Ramakrishna, Uphar Chamoli, Alessandro G Larosa, Subhas C Mukhopadhyay, B Gangadhara Prusty, Ashish D Diwan, Finite element modeling of temporal bone graft changes in XLIF: Quantifying biomechanical effects at adjacent levels, Journal of Orthopaedic Research®, Vol. 40, Issue, 6, pp. 1420–1435, 2022.RamakrishnaVivek ASChamoliUpharLarosaAlessandro GMukhopadhyaySubhas CGangadhara PrustyBDiwanAshish DFinite element modeling of temporal bone graft changes in XLIF: Quantifying biomechanical effects at adjacent levelsJournal of Orthopaedic Research®406142014352022Search in Google Scholar
Keysight Technologies, “N2791A 25 MHz High Voltage Differential Probe,” Keysight Technologies, 13 September 2021. [Online]. Available: https://www.keysight.com/au/en/assets/7018-02105/data-sheets/5990-3780.pdf. [Accessed 10 June 2023].Keysight Technologies“N2791A 25 MHz High Voltage Differential Probe,”Keysight Technologies13September2021[Online]. Available: https://www.keysight.com/au/en/assets/7018-02105/data-sheets/5990-3780.pdf. [Accessed 10 June 2023].Search in Google Scholar
Gunjan Gupta and Robert Van Zyl Energy harvested end nodes and performance improvement of LoRa networks, International Journal on Smart Sensing and Intelligent Systems, VOLUME 14 (2021): ISSUE 1 (JANUARY 2021), Mar 01, 202, 15 pages, DOI: DOI: 10.21307/ijssis-2021-002.GuptaGunjanVan ZylRobertEnergy harvested end nodes and performance improvement of LoRa networksInternational Journal on Smart Sensing and Intelligent Systems1420211(JANUARY 2021), Mar 01,20215 pages, DOI:10.21307/ijssis-2021-002Open DOISearch in Google Scholar
M. Tanaka, S. Sonawane, Y. Fujiwara, K. Uotani, T. Yamauchi, T. Omori and K. Hashizume, “Surgical treatment for spondyloptosis: A case report,” Interdisciplinary Neurosurgery : Advanced Techniques and Case Management, vol. 25, p. 101161, 2021.TanakaM.SonawaneS.FujiwaraY.UotaniK.YamauchiT.OmoriT.HashizumeK.“Surgical treatment for spondyloptosis: A case report,”Interdisciplinary Neurosurgery : Advanced Techniques and Case Management251011612021Search in Google Scholar
H. J. Kim, V. Nemani, O. Boachie-Adjei, M. E. Cunningham, J. A. Iorio, K. O’Neill, B. J. Neuman and L. G. Lenke, “Distal Fusion Level Selection in Scheuermann’s Kyphosis: A Comparison of Lordotic Disc Segment Versus the Sagittal Stable Vertebrae,” Global Spine Journal, vol. 7, no. 3, p. 254–259, 2017.KimH. J.NemaniV.Boachie-AdjeiO.CunninghamM. E.IorioJ. A.O’NeillK.NeumanB. J.LenkeL. G.“Distal Fusion Level Selection in Scheuermann’s Kyphosis: A Comparison of Lordotic Disc Segment Versus the Sagittal Stable Vertebrae,”Global Spine Journal732542592017Search in Google Scholar
M. S. Park, S.-H. Moon, T.-H. Kim, J. K. Oh, H. J. Kang and K. D. Riew, “Radiographic Comparison between Cervical Spine Lateral and Whole-Spine Lateral Standing Radiographs,” Global Spine Journal, vol. 6, no. 2, p. 118–123, 2016.ParkM. S.MoonS.-H.KimT.-H.OhJ. K.KangH. J.RiewK. D.“Radiographic Comparison between Cervical Spine Lateral and Whole-Spine Lateral Standing Radiographs,”Global Spine Journal621181232016Search in Google Scholar
International Organization for Standardization, “ISO 10993-1:2018,” International Organization for Standardization, October 2018. [Online]. Available: https://www.iso.org/standard/68936.html. [Accessed 12 June 2023].International Organization for Standardization“ISO 10993-1:2018,”International Organization for StandardizationOctober2018[Online]. Available: https://www.iso.org/standard/68936.html. [Accessed 12 June 2023].Search in Google Scholar
Keysight Technologies, “U1230 Series - Handheld Digital Multimeteres,” Keysight Technologies, 22 February 2022. [Online]. Available: https://www.keysight.com/au/en/assets/7018-02915/data-sheets/5990-7550.pdf. [Accessed 12 June 2023].Keysight Technologies“U1230 Series - Handheld Digital Multimeteres,”Keysight Technologies22February2022[Online]. Available: https://www.keysight.com/au/en/assets/7018-02915/data-sheets/5990-7550.pdf. [Accessed 12 June 2023].Search in Google Scholar