Cysticercus bovis, the larval stage of T. saginata, causes bovine cysticercosis. Cattle get infected with T. saginata by ingesting the eggs excreted from humans infected with T. saginata. Humans infected by consuming beef infected with larval cysticercus of T. saginata (C. bovis) (Abusier et al., 2007; Ogunremi &Benjamin, 2010). A bovine carcass infected with C. bovis might contaminate 8 – 20 individuals (Sato et al., 2018). T. saginata is found worldwide and affects developing and industrialized countries (Dorny et al., 2000; Silva & Costa-Cruz, 2010). Cysticercosis usually results in few clinical signs or is asymptomatic, especially if the infection is mild. On the other hand, cases are accountable for significant economic losses in the meat industry (WHO, 2005; Torgerson, 2013). Typically, cysticercosis is diagnosed through macroscopic examination throughout carcasses’ post-mortem inspections; yet, the approach was criticized for its low sensitivity in the detection of cysticercosis (Geysen et al., 2007) and diagnostic competence (Abuseir et al., 2006). Molecular methods, like PCR, have excellent specificity and sensitivity, allowing for accurate differentiation and identification of Taenia species while overcoming various drawbacks of traditional approaches (Yamasaki et al., 2004; Gonzalez et al., 2004; Sato et al., 2018).
Advanced tools for detecting and researching the relation between taeniid species have been developed thanks to the introduction of molecular genetic approaches. Mitochondrial DNA sequencing has proven helpful in identifying and genetically characterizing such parasites (Bowles & McManus, 1994). Mitochondrial genes, particularly COX1, are widely used markers for the identification of the helminth parasite (Gasser et al., 1999). In addition, the parasites’ genetic population structure can help with epidemiological investigations and focus on their evolutionary history (Campbell et al., 2006; Anantaphruti et al., 2013). Knowing the parasite’s population variations aids in the analysis of transmission patterns (Pajuelo et al., 2017).
Several studies have looked into human taeniid tapeworm genetic variations, but most studies focused on T. solium and human cysticercosis (Rostami et al., 2015). There’s a scarcity of knowledge on genetic variation in T. saginata from various world regions. In 2007, the whole mitochondrial genome of T. saginata was reported (Jeons et al., 2007). T. saginata was genetically characterized in Ethiopia and Thailand (Okamoto et al., 2010; Hailemariam et al., 2014). In surrounding countries, Jahed Khaniki et al. (2009) recorded a low rate of C. bovis infection in Iran (0.25 %), as well as Kus et al. (2014) reported that the prevalence of infection in Turkey ranged from 0.3 to 30 %.In Iraq, thorough molecular investigations are necessary to improve our understanding of such species’ genetic diversity and to develop an efficient parasite vaccine. In Iraq, epidemiological data are scarce, and the available pieces of literature are few; the prevalence of bovine cysticercosis in cattle, buffaloes, and taeniasis in humans were recorded in Iraqi province (San & Zana, 2017; Al-Jadar & Hayatee 1988; Kadir & Salman, 1999; Musa, 2017; Al-Saqur et al., 2020).Because genetic information on Iraqi T. saginata isolates is scarce, this study was performed using COX1 sequences to analyze the intra-specific variation of T. saginata isolates acquired from cattle in the Sulaymaniyah province of Iraq.
Materials and Methods
From December 2020 until May 2021, 37 T. saginata cysts were obtained from cattle in the Modern Sulaimani Slaughterhouse in the Sulaymaniyah district of Iraq. The specimens were disinfected and preserved using 70 % ethyl alcohol. Following the manufacturer’s instructions, genomic DNA was extracted from each scolex using the EasyPureTM Genomic DNA kit (Trans Gen Biotech Co., China) and stored at -20°C. JB3 (forward): 5′-TTTTTTGGG-CATCCTGAGGTTTAT-3′ and JB4.5 (reverse):5′-TAAAGAAAGAA-CATAATGAAAATG-3′ were employed for amplifying a 400-bp-long mitochondrial COX1 gene fragment (Bowles et al., 1992). The amplification was carried out with f-Pfu DNA polymerase (SBS Genetech Co., China) under the same circumstances as Rostami et al. (2015).
SiMax PCR Products/Agarose Gel Purification Kit was used to purify the purified DNA fragments from agarose gel (SBS Genetech Co.). An ABI -3730XL capillary machine was used to sequence the purified DNA (Macrogen Inc., South Korea). In BioEdit software, sequences were aligned with ClustalW multiple sequence alignments (Hall, 1999). Also, the representative COX1 nucleotide sequences have been submitted to the NCBI and are accessible in the Gen-Bank database under the accession numbers OK036447 – OK036451.Using the maximum likelihood method, a phylogenic tree was generated based on the reference sequences of T. saginata and related species (Supplementary Table 1). Genetic distances were estimated using Kimura’s 2-parameter model, and the tree topology’s robustness was assessed using a bootstrap value of 1000 repetitions using datasets available in MEGA 7 version 7. (Kumar et al., 2016). The maximal composite possibility model has been utilized to calculate the evolutionary divergence regarding nucleotide sequences of T. saginata from the present and previously published studies for further analysis (Kumar et al., 2016).
Ethical Approval and/or Informed Consent
The Ethical Committee approved the study protocol of the University of Sulaimani’s Veterinary Medicine College. All the samples used in this study were taken post-mortem from discarded infected carcasses unfit for human consumption. No animals were killed in the course of this investigation.
Results
The COX1 gene was successfully amplified in all 37 samples. A 384-bp fragment was obtained after the sequences’ trimming and editing. The COX1 gene sequence analysis revealed five distinct haplotypes were identified, designated as IQTS-H1 (n=17), IQTS-H2 (n=8), IQTS-H3 (n=6), IQTS-H4 (n=4), and IQTS-H5 (n=2) (Supplementary Table 2). The pairwise evolutionary divergence between different COX1 haplotypes has been found to range between 0.005 – 0.013, whereas the available nucleotide variation among all five haplotypes is 0.000 – 0.018 (Table 1). In total, nine mutations in the COX1 gene were found in nine segregation sites. The Maximum likelihood approach was used to create a phylogram based on COXI gene sequences. Phylogenetic relationships revealed that all T. saginata haplotypes had been clustered in a single clade, with Korean and Iranian isolates sharing a high degree of closeness (Fig. 1).
Fig.1
Phylogenetic relation of T. saginata from the present study and other taeniids. Phylogenetic tree was constructed using maximum likelihood method (Kimura’s 2-parameter model) based on partial COX1 sequences. Sequences reported in the present study are shown as IQTS-H1– IQTS-H5 with accession numbers (OK036447– OK036451), respectively.
T. saginata and other taeniids COX1 nucleotide sequences from GenBank were utilized for genetic diversity and phylogeny.
Depending on mitochondrial COX1 sequences and accession numbers, the distribution pattern related to T. saginata haplotypes in Iraqi cattle.
Taenia saginata haplotypes
No. of samples (n)
GenBank accession no.
IQTS-H1
17
OK036447
IQTS-H2
8
OK036448
IQTS-H3
6
OK036449
IQTS-H4
4
OK036450
IQTS-H5
2
OK036451
Pairwise evolutionary divergence in COX1 gene sequences between T. saginata and other taeniids.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
1
IQTS-H1:OK036447
2
IQTS-H2:OK036448
0.005
3
IQTS-H3:OK036449
0.005
0.011
4
IQTS-H4:OK036450
0.005
0.011
0.010
5
IQTS-H5:OK036451
0.008
0.013
0.013
0.013
6
T.saginata:JQ756969(Iran)
0.000
0.005
0.005
0.005
0.008
7
T.saginata:JQ756970(Iran)
0.003
0.008
0.003
0.008
0.011
0.003
8
T.saginata:JQ756971(Iran)
0.003
0.003
0.008
0.008
0.011
0.003
0.005
9
T.saginata:JQ756972(Iran)
0.003
0.008
0.008
0.003
0.010
0.003
0.005
0.005
10
T.saginata:JQ756973(Iran)
0.003
0.003
0.008
0.008
0.011
0.003
0.005
0.005
0.005
11
T.saginata:JQ756974(Iran)
0.003
0.008
0.008
0.003
0.011
0.003
0.005
0.005
0.005
0.005
12
T.saginata:JQ756975(Iran)
0.011
0.016
0.005
0.016
0.018
0.011
0.008
0.013
0.013
0.013
0.013
13
T.saginata:JQ756976(Iran)
0.005
0.011
0.011
0.011
0.013
0.005
0.008
0.008
0.008
0.008
0.008
0.016
14
T.saginata:JQ756977(Iran)
0.008
0.013
0.013
0.013
0.016
0.008
0.010
0.010
0.010
0.010
0.010
0.018
0.013
15
T.saginata:JQ756978(Iran)
0.013
0.018
0.018
0.018
0.010
0.013
0.016
0.016
0.016
0.016
0.016
0.024
0.018
0.018
16
T.saginata:JQ756979(Iran)
0.005
0.005
0.011
0.011
0.008
0.005
0.008
0.003
0.008
0.008
0.008
0.016
0.011
0.013
0.018
17
T.saginata:AB465242(Thailand)
0.003
0.008
0.008
0.008
0.011
0.003
0.005
0.005
0.005
0.005
0.005
0.013
0.008
0.010
0.016
0.008
18
T.saginata:AB533173(Thailand)
0.003
0.003
0.008
0.008
0.011
0.003
0.005
0.000
0.005
0.005
0.005
0.013
0.008
0.010
0.016
0.003
0.005
19
T.asiatica:AB597287(Japan)
0.027
0.027
0.032
0.032
0.035
0.027
0.029
0.024
0.029
0.029
0.029
0.038
0.032
0.035
0.038
0.027
0.029
0.024
20
T.saginata:AY684274(Korea)
0.000
0.005
0.005
0.005
0.008
0.000
0.003
0.003
0.003
0.003
0.003
0.011
0.005
0.008
0.013
0.005
0.003
0.003
0.027
21
T.solium:AB066491(Ecuador)
0.125
0.119
0.132
0.132
0.128
0.125
0.129
0.122
0.128
0.122
0.129
0.138
0.129
0.135
0.138
0.119
0.129
0.122
0.138
0.125
22
T.multiceps:JX535576(China)
0.058
0.058
0.063
0.063
0.066
0.058
0.061
0.055
0.060
0.061
0.061
0.069
0.063
0.066
0.072
0.058
0.061
0.055
0.075
0.058
0.107
23
T.hydatigena:MT784895(China)
0.124
0.127
0.131
0.131
0.134
0.124
0.127
0.127
0.127
0.124
0.127
0.137
0.124
0.134
0.137
0.131
0.127
0.127
0.143
0.124
0.146
0.134
24
E.granulosus:MW214711(Iran)
0.216
0.212
0.223
0.219
0.219
0.216
0.219
0.212
0.219
0.216
0.216
0.230
0.219
0.219
0.230
0.209
0.212
0.212
0.234
0.216
0.212
0.237
0.189
Discussion
Phylogenetic studies of distinct Taenia species have applied various genomic areas, such as 18-S and 28-S ribosomal RNA, in addition to the mitochondrial genes (Hoberg, 2006; Yan et al., 2013). In addition, sequence fragment analysis depending on PCR synthesis of such taeniids’ DNA is one of the molecular methods frequently employed for phylogenetic investigations (Nickish-Rosenegk et al., 1999). Gonzalez et al. (2011) sequenced the appropriate sequences from all taeniid isolates after PCR-amplifying them using particular primers.
This work studied the mitochondrial COX1 gene diversity of 37 T. saginata cattle specimens from Sulaymaniyah, Iraq. COX1 sequence analysis revealed nine nucleotide substitutions, three of which have been nucleotide transversions, in five T. saginata haplotypes. The haplotypes detected eight amino acid alterations attributable to eight nucleotide substitutions (Table 2). There is no indication that cytochrome c oxidase amino acid composition changes impact the parasite adaptability or enzyme’s function. Yet, it was demonstrated in other parasite species that a single amino acid change could influence the biological fitness of an organism (Tachibana et al., 2004; Otsuki et al., 2009). COX1 nucleotide variation was determined to be 0.027 – 0.134 across T. saginata isolates from this investigation and six other Taenia species. Bowles and McManus (1994) and Rostami et al. (2015) calculated the predicted nucleotide variations in COX1 in genus Taenia to be 0.025 – 0.158 and 0.026 – 0.141, respectively. Compared to other haplotypes of such taeniid, COX1 of T. saginata showed a relatively low degree of variation. Similar results were observed by Abuseir et al. (2018) in Germany. In contrast, other studies on the genetic divergence of T. saginata in Asia have revealed considerably higher haplotype diversity in the COX1 gene (Anantaphruti et al.,2013; Sanpool et al., 2017). Furthermore, pairwise comparisons of T. saginata from the experiment with existing mitochondrial sequences from Iranian (Rostami et al., 2015) and Korean (Jeon et al., 2007) cattle revealed 0.000 – 0.018 and 0.000 – 0.008 nucleotide differences in COX1 gene, respectively (Table 1). As a result, the phylogram revealed that the Iraqi T. saginata in this study was equivalent to other T. saginata, sharing 98.18 – 99.74 % identity with the ones from Iran and Korea. The phylogenetic analysis produced a dendrogram clustered all COX1 haplotypes uniformly to a single clade with a T. saginata reference sequence (AY684274 accession number). As distinct sub-clade, other types of the taeniids, including Echinococcus granulosus, T. solium, T. multiceps, T. asiatica, and T. hydatigena, were grouped together.
The five haplotypes of T. saginata COX1 sequences from Iraqi cattle were put to comparison with reference COX1 sequence from Korea (accession number AY684274) for the substitutions of the nucleotide and corresponding amino acid variations.
Haplotypes of the current study
Position of nucleic acid substitution
Amino acid substitution
IQTS-H1
–*
–*
IQTS-H2
197 (A→G)
Glu→Gly
332 (C→T)
Ala→Val
IQTS-H3
70 (T→A)
Leu→Met
356 (T→C)
Ile→Thr
IQTS-H4
10 (G→C)
Ala→Leu
371 (T→C)
Leu→Ser
IQTS-H5
39 (C→T)
Val→Val
146 (G→A)
Arg→Lys
195 (G→C)
Gln→His
Understanding the control and epidemiology of parasitic infections requires molecular characterization of veterinary and medical significance parasites. T. saginata can be defined as one of the human and cattle zoonotic parasites with a global range (Rostmai et al., 2015). In the molecular epidemiological surveys of the echinococcosis/taeniasis in various host assemblages and geographical settings, DNA methods are often utilized to identify Echinococcus and Taenia species, strains, and subspecies (McManus, 2006).
Conclusion
The current study added new data about T. saginata mt-DNA cattle haplotypes in Iraq. T. saginata was made up of five haplotypes clustered in a single clade, according to phylogenetic analysis of the COX1 gene calculated using maximum likelihood. Four new strains with new mutations have been discovered in the research area. More thorough research on nuclear genes is needed to fully understand the amount and relevance of genetic variations within populations of the T. saginata.
Phylogenetic relation of T. saginata from the present study and other taeniids. Phylogenetic tree was constructed using maximum likelihood method (Kimura’s 2-parameter model) based on partial COX1 sequences. Sequences reported in the present study are shown as IQTS-H1– IQTS-H5 with accession numbers (OK036447– OK036451), respectively.
The five haplotypes of T. saginata COX1 sequences from Iraqi cattle were put to comparison with reference COX1 sequence from Korea (accession number AY684274) for the substitutions of the nucleotide and corresponding amino acid variations.
Haplotypes of the current study
Position of nucleic acid substitution
Amino acid substitution
IQTS-H1
–*
–*
IQTS-H2
197 (A→G)
Glu→Gly
332 (C→T)
Ala→Val
IQTS-H3
70 (T→A)
Leu→Met
356 (T→C)
Ile→Thr
IQTS-H4
10 (G→C)
Ala→Leu
371 (T→C)
Leu→Ser
IQTS-H5
39 (C→T)
Val→Val
146 (G→A)
Arg→Lys
195 (G→C)
Gln→His
T. saginata and other taeniids COX1 nucleotide sequences from GenBank were utilized for genetic diversity and phylogeny.
Taeniid parasites
GenBank accession no.
Origin
Host
Author (reference)
T. saginata
AY684274
Korea
Human
Jeon et al., 2007
T. saginata
AB533173
Thailand
Human
Okamoto, 2016 unpublished
T. saginata
AB465242
Thailand
Human
Okamoto et al., 2010
T. saginata
JQ756969–JQ756979
Iran
Cattle
Rostami et al., 2015
T. asiatica
AB597287
Japan
Human
Yamasaki et al., 2021
T. solium
AB066491
Ecuador
Pig
Nakao et al., 2002
T. multiceps
JX535576
China
Sheep
Li et al., 2013
T. hydatigena
MT784895
China
Dog
Ohiolei et al., 2021
Echinococcus granulosus
MW214711
Iran
Sheep
Babaei et al., 2021
Pairwise evolutionary divergence in COX1 gene sequences between T. saginata and other taeniids.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
1
IQTS-H1:OK036447
2
IQTS-H2:OK036448
0.005
3
IQTS-H3:OK036449
0.005
0.011
4
IQTS-H4:OK036450
0.005
0.011
0.010
5
IQTS-H5:OK036451
0.008
0.013
0.013
0.013
6
T.saginata:JQ756969(Iran)
0.000
0.005
0.005
0.005
0.008
7
T.saginata:JQ756970(Iran)
0.003
0.008
0.003
0.008
0.011
0.003
8
T.saginata:JQ756971(Iran)
0.003
0.003
0.008
0.008
0.011
0.003
0.005
9
T.saginata:JQ756972(Iran)
0.003
0.008
0.008
0.003
0.010
0.003
0.005
0.005
10
T.saginata:JQ756973(Iran)
0.003
0.003
0.008
0.008
0.011
0.003
0.005
0.005
0.005
11
T.saginata:JQ756974(Iran)
0.003
0.008
0.008
0.003
0.011
0.003
0.005
0.005
0.005
0.005
12
T.saginata:JQ756975(Iran)
0.011
0.016
0.005
0.016
0.018
0.011
0.008
0.013
0.013
0.013
0.013
13
T.saginata:JQ756976(Iran)
0.005
0.011
0.011
0.011
0.013
0.005
0.008
0.008
0.008
0.008
0.008
0.016
14
T.saginata:JQ756977(Iran)
0.008
0.013
0.013
0.013
0.016
0.008
0.010
0.010
0.010
0.010
0.010
0.018
0.013
15
T.saginata:JQ756978(Iran)
0.013
0.018
0.018
0.018
0.010
0.013
0.016
0.016
0.016
0.016
0.016
0.024
0.018
0.018
16
T.saginata:JQ756979(Iran)
0.005
0.005
0.011
0.011
0.008
0.005
0.008
0.003
0.008
0.008
0.008
0.016
0.011
0.013
0.018
17
T.saginata:AB465242(Thailand)
0.003
0.008
0.008
0.008
0.011
0.003
0.005
0.005
0.005
0.005
0.005
0.013
0.008
0.010
0.016
0.008
18
T.saginata:AB533173(Thailand)
0.003
0.003
0.008
0.008
0.011
0.003
0.005
0.000
0.005
0.005
0.005
0.013
0.008
0.010
0.016
0.003
0.005
19
T.asiatica:AB597287(Japan)
0.027
0.027
0.032
0.032
0.035
0.027
0.029
0.024
0.029
0.029
0.029
0.038
0.032
0.035
0.038
0.027
0.029
0.024
20
T.saginata:AY684274(Korea)
0.000
0.005
0.005
0.005
0.008
0.000
0.003
0.003
0.003
0.003
0.003
0.011
0.005
0.008
0.013
0.005
0.003
0.003
0.027
21
T.solium:AB066491(Ecuador)
0.125
0.119
0.132
0.132
0.128
0.125
0.129
0.122
0.128
0.122
0.129
0.138
0.129
0.135
0.138
0.119
0.129
0.122
0.138
0.125
22
T.multiceps:JX535576(China)
0.058
0.058
0.063
0.063
0.066
0.058
0.061
0.055
0.060
0.061
0.061
0.069
0.063
0.066
0.072
0.058
0.061
0.055
0.075
0.058
0.107
23
T.hydatigena:MT784895(China)
0.124
0.127
0.131
0.131
0.134
0.124
0.127
0.127
0.127
0.124
0.127
0.137
0.124
0.134
0.137
0.131
0.127
0.127
0.143
0.124
0.146
0.134
24
E.granulosus:MW214711(Iran)
0.216
0.212
0.223
0.219
0.219
0.216
0.219
0.212
0.219
0.216
0.216
0.230
0.219
0.219
0.230
0.209
0.212
0.212
0.234
0.216
0.212
0.237
0.189
Depending on mitochondrial COX1 sequences and accession numbers, the distribution pattern related to T. saginata haplotypes in Iraqi cattle.
Abuseir, S., Schicht, S., Springer, A., Nagel-Kohl, U., Strube, C. (2018): Genetic characterization of Taenia saginata cyst isolates from Germany. Vector Borne Zoonotic Dis, 18(8): 433–439.DOI: 10.1089/vbz.2017.2218AbuseirS.SchichtS.SpringerA.Nagel-KohlU.StrubeC.2018Genetic characterization of Taenia saginata cyst isolates from GermanyVector Borne Zoonotic Dis,18843343910.1089/vbz.2017.221829893621Ouvrir le DOISearch in Google Scholar
Abuseir, S., Kühne, M., Schnieder, T., Klein, G., Epe, C. (2007): Evaluation of a serological method for the detection of Taenia saginata cysticercosis using serum and meat juice samples. Parasitol Res, 101(1): 131–137. DOI: 10.1007/s00436-006-0429-zAbuseirS.KühneM.SchniederT.KleinG.EpeC.2007Evaluation of a serological method for the detection of Taenia saginata cysticercosis using serum and meat juice samplesParasitol Res101113113710.1007/s00436-006-0429-z17216238Ouvrir le DOISearch in Google Scholar
Abuseir, S., Epe, C., Schnieder, T., Klein, G., Kühne, M. (2006): Visual diagnosis of Taenia saginata cysticercosis during meat inspection: is it unequivocal? Parasitol Res, 99(4): 405–409.DOI: 10.1007/s00436-006-0158-3AbuseirS.EpeC.SchniederT.KleinG.KühneM.2006Visual diagnosis of Taenia saginata cysticercosis during meat inspection: is it unequivocal?Parasitol Res99440540910.1007/s00436-006-0158-316583204Ouvrir le DOISearch in Google Scholar
Al-Jadar, Z.H., Hayatee, Z.G. (1988): Studies on the prevalence of bovine cysticercosis in Iraq. J Vet Parasitol, 2: 83–85Al-JadarZ.H.HayateeZ.G.1988Studies on the prevalence of bovine cysticercosis in IraqJ Vet Parasitol,28385Search in Google Scholar
Al-Saqur, I., Harith, S., Amjed, Q., Hussin, S. (2020): Prevalence of gastrointestinal parasites in Iraq during 2015. In proceedings: AIP Publishing LLC, 2290(1): 020005. DOI: 10.1063/5.0027394Al-SaqurI.HarithS.AmjedQ.HussinS.2020Prevalence of gastrointestinal parasites in Iraq during 2015In proceedings: AIP Publishing LLC,2290102000510.1063/5.0027394Ouvrir le DOISearch in Google Scholar
Anantaphruti, M., Thaenkham, U., Kusolsuk, T., Maipanich, W., Saguankiat, S., Pubampen, S., Phuphisut, O. (2013): Genetic variation and population genetics of Taenia saginata in north and northeast Thailand in relation to Taenia asiaticaJ Parasitol Res, 2013: 310605. DOI: 10.1155/2013/310605AnantaphrutiM.ThaenkhamU.KusolsukT.MaipanichW.SaguankiatS.PubampenS.PhuphisutO.2013Genetic variation and population genetics of Taenia saginata in north and northeast Thailand in relation to Taenia asiaticaJ Parasitol Res,201331060510.1155/2013/310605370726523864933Ouvrir le DOISearch in Google Scholar
Babaei, Z., Taherkhani, R., Barazesh, A., Taherzadeh, M., Khorami, S., Fouladvand, M. (2021): Genotyping and phylogenetic analysis of hydatid cysts isolated from livestock in Bushehr province, Iran. J Parasit Dis, 45(1): 197–203. DOI: 10.1007/s12639-020-01293-7 Bowles, J., Blair, D., McManus, D.P. (1992): Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol, 54(2): 165–173. DOI: 10.1016/0166-6851(92)90109-wBabaeiZ.TaherkhaniR.BarazeshA.TaherzadehM.KhoramiS.FouladvandM.2021Genotyping and phylogenetic analysis of hydatid cysts isolated from livestock in Bushehr province, IranJ Parasit Dis45119720310.1007/s12639-020-01293-7Bowles, J., Blair, D., McManus, D.P. (1992): Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54(2) 165-17310.1016/0166-6851(92)90109-w792126333746404Ouvrir le DOISearch in Google Scholar
Bowles, J., McManus, D.P. (1994): Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans. Am J Trop Med Hyg, 50(1): 33–44. DOI: 10.4269/ajtmh.1994.50.1.TM0500010033BowlesJ.McManusD.P.1994Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humansAm J Trop Med Hyg,501334410.4269/ajtmh.1994.50.1.TM0500010033Ouvrir le DOISearch in Google Scholar
Campbell, G., Garcia, H.H., Nakao, M., Ito, A., Craig, P.S. (2006): Genetic variation in Taenia soliumParasitol Int, 55: S121 – S126. DOI: 10.1016/j.parint.2005.11.019CampbellG.GarciaH.H.NakaoM.ItoA.CraigP.S.2006Genetic variation in Taenia soliumParasitol Int55S121S12610.1016/j.parint.2005.11.01916352464Ouvrir le DOISearch in Google Scholar
Dorny, P., Vercamen, F., Brandt, J., Vansteenkiste, W., Berkvens, D., Geerts, S. (2000): Sero-epidemiological study of Taenia saginata cysticercosis in Belgian cattle. Vet Parasitol, 88: 43–49. DOI: 10.1016/S0304-4017(99)00196-XDornyP.VercamenF.BrandtJ.VansteenkisteW.BerkvensD.GeertsS.2000Sero-epidemiological study of Taenia saginata cysticercosis in Belgian cattleVet Parasitol88434910.1016/S0304-4017(99)00196-XOuvrir le DOISearch in Google Scholar
Gasser, R. B., Zhu, X., McManus, D. P. (1999): NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). Int J Parasitol, 29(12): 1965–1970. DOI: 10.1016/s0020-7519(99)00153-8 Geysen, D., Kanobana, K., Victor, B., Rodriguez-Hidalgo, R., De Borchgrave, J., Brandt, J., Dorny, P. (2007): Validation of meat inspection results for Taenia saginata cysticercosis by PCR–restriction fragment length polymorphism. J Food Prot, 70(1): 236–240. DOI: 10.4315/0362-028x-70.1.236GasserR. B.ZhuX.McManusD. P.1999NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda)Int J Parasitol29121965197010.1016/s0020-7519(99)00153-8Geysen, D., Kanobana, K., Victor, B., Rodriguez-Hidalgo, R., De Borchgrave, J., Brandt, J., Dorny, P. (2007): Validation of meat inspection results for Taenia saginata cysticercosis by PCR–restriction fragment length polymorphism. J Food Prot, 70(1) 236-24010.4315/0362-028x-70.1.23610961852Ouvrir le DOISearch in Google Scholar
González, L. M., Ramiro, R., García, L., Parkhouse, R. M. E., Mc-Manus, D. P., Gárate, T. (2011): Genetic variability of the 18 kDa/HP6 protective antigen in Taenia saginata and Taenia asiatica: implications for vaccine development. Mol Biochem Parasitol, 176(2): 131–134. DOI: 10.1016/j.molbiopara.2010.12.014GonzálezL. M.RamiroR.GarcíaL.ParkhouseR. M. E.Mc-ManusD. P.GárateT.2011Genetic variability of the 18 kDa/HP6 protective antigen in Taenia saginata and Taenia asiatica: implications for vaccine developmentMol Biochem Parasitol176213113410.1016/j.molbiopara.2010.12.01421232558Ouvrir le DOISearch in Google Scholar
González, L.M., Montero, E., Morakote, N., Puente, S., De Tuesta, J.L.D., Serra, T., López-Velez, R., McManus, D.P., Harrison, L.J., Parkhouse, R.M.E. and Gárate, T.(2004): Differential diagnosis of Taenia saginata and Taenia saginata asiatica taeniasis through PCR. Diagn Microbiol Infect Dis, 49(3): 183–188. DOI: 10.1016/j.diagmicrobio.2004.03.013GonzálezL.M.MonteroE.MorakoteN.PuenteS.De TuestaJ.L.D.SerraT.López-VelezR.McManusD.P.HarrisonL.J.ParkhouseR.M.E.andGárateT.2004Differential diagnosis of Taenia saginata and Taenia saginata asiatica taeniasis through PCRDiagn Microbiol Infect Dis49318318810.1016/j.diagmicrobio.2004.03.01315246508Ouvrir le DOISearch in Google Scholar
Hailemariam, Z., Nakao, M., Menkir, S., Lavikainen, A., Iwaki, T., Yanagida, T., Okamoto, M. and Ito, A. (2014): Molecular identification of species of Taenia causing bovine cysticercosis in Ethiopia. J Helminthol, 88(3): 376–380. DOI: 10.1017/S0022149X13000138 Hall T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41: 95–98. DOI: 10.14601/Phytopathol_Mediterr-14998U1.29HailemariamZ.NakaoM.MenkirS.LavikainenA.IwakiT.YanagidaT.OkamotoM.andItoA.2014Molecular identification of species of Taenia causing bovine cysticercosis in EthiopiaJ Helminthol88337638010.1017/S0022149X13000138Hall T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41 95-9810.14601/Phytopathol_Mediterr-14998U1.2923452760Ouvrir le DOISearch in Google Scholar
Hoberg, E.P. (2006): Phylogeny of Taenia: species definitions and origins of human parasites. Parasitol Int, 55: S23 – S30. DOI: 10.1016/j.parint.2005.11.049HobergE.P.2006Phylogeny of Taenia: species definitions and origins of human parasitesParasitol Int55S23S3010.1016/j.parint.2005.11.04916371252Ouvrir le DOISearch in Google Scholar
Jahed Khaniki, G.R., Raei, M., Kia, E.B., MotevalliHaghi, A., Selseleh, M. (2010): Prevalence of bovine cysticercosis in slaughtered cattle in Iran. Trop Anim Health Prod, 42(2): 141–143. DOI: 10.1007/s11250-009-9399-3Jahed KhanikiG.R.RaeiM.KiaE.B.MotevalliHaghiA.SelselehM. (2010Prevalence of bovine cysticercosis in slaughtered cattle in IranTrop Anim Health Prod,42214114310.1007/s11250-009-9399-319568950Ouvrir le DOISearch in Google Scholar
Jeon, H.K., Kim, K.H., Eom, K.S. (2007): Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiaticaParasitol Int, 56(3): 243–246. DOI: 10.1016/j.parint.2007.04.001JeonH.K.KimK.H.EomK.S.2007Complete sequence of the mitochondrial genome of Taenia saginata: comparison with Tsolium and T. asiatica Parasitol Int,56324324610.1016/j.parint.2007.04.00117499016Ouvrir le DOISearch in Google Scholar
Kadir, M., Salman, Y. (1999): Prevalence of intestinal parasites among primary school children in Al-Taameem Province. Iraq. Ann Coll Med Mosul, 25: 94–98KadirM.SalmanY.1999Prevalence of intestinal parasites among primary school children in Al-Taameem ProvinceIraq. Ann Coll Med Mosul,259498Search in Google Scholar
Kumar, S., Stecher, G., Tamura, K.(2016): MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 33: 1870–1874. DOI: 10.1093/molbev/msw054KumarS.StecherG.TamuraK.2016MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasetsMol Biol Evol,331870187410.1093/molbev/msw054821082327004904Ouvrir le DOISearch in Google Scholar
Kus, F.S., Sevimli, F.K., Miman, Ö. (2014): Cysticercus bovis in Turkey and its importance from the public health aspect. Turkiye Parazitol Derg, 38(1): 41. DOI: 10.5152/tpd.2014.3244KusF.S.SevimliF.K.MimanÖ.2014Cysticercus bovis in Turkey and its importance from the public health aspectTurkiye Parazitol Derg,3814110.5152/tpd.2014.324424659701Ouvrir le DOISearch in Google Scholar
Li, W.H., Jia, W.Z., Qu, Z.G., Xie, Z.Z., Luo, J.X., Yin, H., Sun, X.L., Blaga, R., Fu, B.Q. (2013): Molecular characterization of Taenia multiceps isolates from Gansu Province, China, by sequencing of mitochondrial cytochrome C oxidase subunit 1. Korean J Parasitol, 51(2): 197. DOI: 10.3347/kjp.2013.51.2.197LiW.H.JiaW.Z.QuZ.G.XieZ.Z.LuoJ.X.YinH.SunX.L.BlagaR.FuB.Q.2013Molecular characterization of Taenia multiceps isolates from Gansu Province, China, by sequencing of mitochondrial cytochrome C oxidase subunit 1Korean J Parasitol,51219710.3347/kjp.2013.51.2.197366206323710087Ouvrir le DOISearch in Google Scholar
McManus, D.P. (2006): Molecular discrimination of taeniid cestodes. Parasitol Int, 55: S31 – S37. DOI: 10.1016/j.parint.2005.11.004McManusD.P.2006Molecular discrimination of taeniid cestodesParasitol Int55S31S3710.1016/j.parint.2005.11.00416337179Ouvrir le DOISearch in Google Scholar
Musa, I.S. (2017): Incidence of helminthiasis in humans in Iraq. Karbala Int J Mod Sci, 3(4): 267–271. DOI: 10.1016/j.kijoms.2017.08.001.MusaI.S.2017Incidence of helminthiasis in humans in IraqKarbala Int J Mod Sci,3426727110.1016/j.kijoms.2017.08.001.Ouvrir le DOISearch in Google Scholar
Nakao, M., Okamoto, M., Sako, Y., Yamasaki, H., Nakaya, K., Ito, A. (2002): A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm Taenia solium worldwide. Parasitology, 124(6): 657–662. DOI: 10.1017/s0031182002001725NakaoM.OkamotoM.SakoY.YamasakiH.NakayaK.ItoA.2002A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm Taenia solium worldwideParasitology124665766210.1017/s003118200200172512118722Ouvrir le DOISearch in Google Scholar
Nickisch-Rosenegk, M., Silva-Gonzalez, R., Lucius, R. (1999): Modification of universal 12 rDNA primers for specific amplification of contaminated Taenia spp.(cestoda) gDNA enabling phylogenetic studies. Parasitol Res, 85: 819–825. DOI: 10.1007/s004360050638Nickisch-RosenegkM.Silva-GonzalezR.LuciusR.1999Modification of universal 12 rDNA primers for specific amplification of contaminated Taenia spp.(cestoda) gDNA enabling phylogenetic studiesParasitol Res8581982510.1007/s00436005063810494807Ouvrir le DOISearch in Google Scholar
Ogunremi, O., Benjamin, J. (2010): Development and field evaluation of a new serological test for Taenia saginata cysticercosis. Vet. Parasitol., 168(1–2): 93–101. DOI: 10.1016/j.vetpar.2009.12.014 Ohiolei, J.A., Yan, H.B., Li, L., Li, W.H., Wu, Y.D., Alvi, M.A., Zhang, N.Z., Fu, B.Q., Wang, X.L., Jia, W.Z. (2021): A new molecular nomenclature for Taenia hydatigena: mitochondrial DNA sequences reveal sufficient diversity suggesting the assignment of major haplotype divisions. Parasitology, 148(3): 311–326. DOI: 10.1017/S003118202000205XOgunremiO.BenjaminJ.2010Development and field evaluation of a new serological test for Taenia saginata cysticercosisVet. Parasitol.,1681–29310110.1016/j.vetpar.2009.12.014Ohiolei, J.A., Yan, H.B., Li, L., Li, W.H., Wu, Y.D., Alvi, M.A., Zhang, N.Z., Fu, B.Q., Wang, X.L., Jia, W.Z. (2021): A new molecular nomenclature for Taenia hydatigena: mitochondrial DNA sequences reveal sufficient diversity suggesting the assignment of major haplotype divisions. Parasitology 148(3) 311-32610.1017/S003118202000205X20083357Ouvrir le DOISearch in Google Scholar
Okamoto, M., Nakao, M., Blair, D., Anantaphruti, M.T., Waikagul, J., Ito, A. (2010): Evidence of hybridization between Taenia saginata and Taenia asiatica. Parasitol Int, 59(1): 70–74. DOI: 10.1016/j.parint.2009.10.007OkamotoM.NakaoM.BlairD.AnantaphrutiM.T.WaikagulJ.ItoA.2010Evidence of hybridization between Taenia saginata and Taenia asiaticaParasitol Int,591707410.1016/j.parint.2009.10.00719874910Ouvrir le DOISearch in Google Scholar
Otsuki, H., Kaneko, O., Thongkukiatkul, A., Tachibana, M., Iriko, H., Takeo, S., Tsuboi, T., Torii, M. (2009): Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence. Proc Natl Acad Sci, 106(17): 7167–7172. DOI: 10.1073/pnas.0811313106OtsukiH.KanekoO.ThongkukiatkulA.TachibanaM.IrikoH.TakeoS.TsuboiT.ToriiM.2009Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulenceProc Natl Acad Sci106177167717210.1073/pnas.0811313106267843319346470Ouvrir le DOISearch in Google Scholar
Pajuelo, M.J., Eguiluz, M., Roncal, E., Quiñones-García, S., Clipman, S.J., Calcina, J., Gavidia, C.M., Sheen, P., Garcia, H.H., Gilman, R.H., Gonzalez, A.E.(2017): Genetic variability of Taenia soliumcysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markers. PLoS Negl Trop Dis, 11(12): e0006087. DOI: 10.1371/journal.pntd.0006087PajueloM.J.EguiluzM.RoncalE.Quiñones-GarcíaS.ClipmanS.J.CalcinaJ.GavidiaC.M.SheenP.GarciaH.H.GilmanR.H.GonzalezA.E.2017Genetic variability of Taenia soliumcysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markersPLoS Negl Trop Dis1112e000608710.1371/journal.pntd.0006087574620229284011Ouvrir le DOISearch in Google Scholar
Rostami, S., Salavati, R., Beech, R. N., Babaei, Z., Sharbatkhori, M., Harandi, M. F. (2015): Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences. Parasitol Res, 114(4): 1365–1376. DOI: 10.1007/s00436-015-4314-5RostamiS.SalavatiR.BeechR. N.BabaeiZ.SharbatkhoriM.HarandiM. F.2015Genetic variability of Taenia saginata inferred from mitochondrial DNA sequencesParasitol Res11441365137610.1007/s00436-015-4314-525687521Ouvrir le DOISearch in Google Scholar
San, A.M., Zana, H.M. (2017): Molecular detection of cysticercosis of beef carcasses in Sulaimani slaughterhouse. J Bacteriol Parasitol, 8: 2SanA.M.ZanaH.M.2017Molecular detection of cysticercosis of beef carcasses in Sulaimani slaughterhouseJ Bacteriol Parasitol,82Search in Google Scholar
Sanpool, O., Rodpai, R., Intapan, P.M., Sadaow, L., Thanchomnang, T., Laymanivong, S., Maleewong, W. and Yamasaki, H. (2017): Genetic diversity of Taenia saginata (Cestoda: Cyclophyllidea) from Lao People’s Democratic Republic and northeastern Thailand based on mitochondrial DNA. Parasit Vectors, 10(1): 1–7. DOI: 10.1186/s13071-017-2079-7SanpoolO.RodpaiR.IntapanP.M.SadaowL.ThanchomnangT.LaymanivongS.MaleewongW.andYamasakiH.2017Genetic diversity of Taenia saginata (Cestoda: Cyclophyllidea) from Lao People’s Democratic Republic and northeastern Thailand based on mitochondrial DNAParasit Vectors,1011710.1186/s13071-017-2079-7534619028284223Ouvrir le DOISearch in Google Scholar
Sato, M.O., Sato, M., Yanagida, T., Waikagul, J., Pongvongsa, T., Sako, Y., Sanguankiat, S., Yoonuan, T., Kounnavang, S., Kawai, S., Ito, A., Okamoto, M. and Moji, K. (2018):Taenia soliumTaenia saginataTaenia asiatica, their hybrids and other helminthic infections occurring in a neglected tropical diseases’ highly endemic area in Lao PDR. PLoS Negl Trop Dis, 12(2): e0006260. DOI: 10.1371/journal.pntd.0006260SatoM.O.SatoM.YanagidaT.WaikagulJ.PongvongsaT.SakoY.SanguankiatS.YoonuanT.KounnavangS.KawaiS.ItoA.OkamotoM.andMojiK.2018Taenia solium Taenia saginata Taenia asiatica, their hybrids and other helminthic infections occurring in a neglected tropical diseases’ highly endemic area in Lao PDRPLoS Negl Trop Dis122e000626010.1371/journal.pntd.0006260582139929420601Ouvrir le DOISearch in Google Scholar
Silva, C.V., Costa-Cruz, J.M. (2010): A glance at Taenia saginata infection, diagnosis, vaccine, biological control, and treatment. Infect Disord Drug Targets,10(5): 313–321. DOI: 10.2174/187152610793180894SilvaC.V.Costa-CruzJ.M.2010A glance at Taenia saginata infection, diagnosis, vaccine, biological control, and treatmentInfect Disord Drug Targets10531332110.2174/18715261079318089420701576Ouvrir le DOISearch in Google Scholar
Tachibana, H., Matsumoto, N., Cheng, X. J., Tsukamoto, H., Yoshihara, E. (2004): Improved affinity of a human anti-Entamoeba histolytica Gal/GalNAc lectin Fab fragment by a single amino acid modification of the light chain. Clin Diagn Lab Immunol,11(6): 1085–1088. DOI: 10.1128/CDLI.11.6.1085-1088.2004TachibanaH.MatsumotoN.ChengX. J.TsukamotoH.YoshiharaE.2004Improved affinity of a human anti-Entamoeba histolytica Gal/GalNAc lectin Fab fragment by a single amino acid modification of the light chainClin Diagn Lab Immunol1161085108810.1128/CDLI.11.6.1085-1088.200452478815539510Ouvrir le DOISearch in Google Scholar
Torgerson, P.R. (2013): One world health: socioeconomic burden and parasitic disease control priorities. Vet Parasitol, 195(3–4): 223–232. DOI: 10.1016/j.vetpar.2013.04.004TorgersonP.R.2013One world health: socioeconomic burden and parasitic disease control prioritiesVet Parasitol1953–422323210.1016/j.vetpar.2013.04.00423628712Ouvrir le DOISearch in Google Scholar
WHO (2005): WHO/FAO/OIE guidelines for the surveillance, prevention, and control of taeniasis/cysticercosis, edited by Murrell, K.D., Dorny, P., Flisser, A., Geerts, S., Kyvsgard, N.C., McManus, D.P., Nash, T.E., Pawlowski, Z.S. Paris: OIE (World Organisation for Animal Health). Retrieved from https://apps.who.int/iris/handle/10665/43291WHO2005WHO/FAO/OIE guidelines for the surveillance, prevention, and control of taeniasis/cysticercosisedited byMurrellK.D.DornyP.FlisserA.GeertsS.KyvsgardN.C.McManusD.P.NashT.E.PawlowskiZ.S.ParisOIE (World Organisation for Animal Health)Retrieved fromhttps://apps.who.int/iris/handle/10665/43291Search in Google Scholar
Yamasaki, H., Morishima, Y., Sugiyama, H., Okamoto, M. (2021): Current situation of human Taenia asiatica taeniasis in Japan. Parasitol Int, 83: 102340. DOI: 10.1016/j.parint.2021.102340YamasakiH.MorishimaY.SugiyamaH.OkamotoM.2021Current situation of human Taenia asiatica taeniasis in JapanParasitol Int8310234010.1016/j.parint.2021.10234033812025Ouvrir le DOISearch in Google Scholar
Yamasaki, H., Allan, J.C., Sato, M.O., Nakao, M., Sako, Y., Nakaya, K., Qiu, D., Mamuti, W., Craig, P.S., Ito, A. (2004): DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCR.J Clin Microbiol, 42(2): 548–553. DOI: 10.1128/JCM.42.2.548-553.2004YamasakiH.AllanJ.C.SatoM.O.NakaoM.SakoY.NakayaK.QiuD.MamutiW.CraigP.S.ItoA.2004DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCRJ Clin Microbiol42254855310.1128/JCM.42.2.548-553.200434450014766815Ouvrir le DOISearch in Google Scholar
Yan, H., Lou, Z., Li, L., Ni, X., Guo, A., Li, H., Zheng, Y., Dyachen ko, V., Jia, W. (2013): The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus TaeniaParasitol Res, 112(3): 1343–1347. DOI: 10.1007/s00436-012-3199-9YanH.LouZ.LiL.NiX.GuoA.LiH.ZhengY.Dyachen koV.JiaW.2013The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus TaeniaParasitol Res11231343134710.1007/s00436-012-3199-923183704Ouvrir le DOISearch in Google Scholar