1. bookVolumen 59 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1336-9083
Erstveröffentlichung
22 Apr 2006
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Genetic variation of Taenia saginata cyst isolates from Iraq based on mitochondrial COX1 sequences

Online veröffentlicht: 17 Dec 2022
Volumen & Heft: Volumen 59 (2022) - Heft 3 (September 2022)
Seitenbereich: 226 - 232
Eingereicht: 29 Oct 2021
Akzeptiert: 30 Aug 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1336-9083
Erstveröffentlichung
22 Apr 2006
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Introduction

Cysticercus bovis, the larval stage of T. saginata, causes bovine cysticercosis. Cattle get infected with T. saginata by ingesting the eggs excreted from humans infected with T. saginata. Humans infected by consuming beef infected with larval cysticercus of T. saginata (C. bovis) (Abusier et al., 2007; Ogunremi &Benjamin, 2010). A bovine carcass infected with C. bovis might contaminate 8 – 20 individuals (Sato et al., 2018). T. saginata is found worldwide and affects developing and industrialized countries (Dorny et al., 2000; Silva & Costa-Cruz, 2010). Cysticercosis usually results in few clinical signs or is asymptomatic, especially if the infection is mild. On the other hand, cases are accountable for significant economic losses in the meat industry (WHO, 2005; Torgerson, 2013). Typically, cysticercosis is diagnosed through macroscopic examination throughout carcasses’ post-mortem inspections; yet, the approach was criticized for its low sensitivity in the detection of cysticercosis (Geysen et al., 2007) and diagnostic competence (Abuseir et al., 2006). Molecular methods, like PCR, have excellent specificity and sensitivity, allowing for accurate differentiation and identification of Taenia species while overcoming various drawbacks of traditional approaches (Yamasaki et al., 2004; Gonzalez et al., 2004; Sato et al., 2018).

Advanced tools for detecting and researching the relation between taeniid species have been developed thanks to the introduction of molecular genetic approaches. Mitochondrial DNA sequencing has proven helpful in identifying and genetically characterizing such parasites (Bowles & McManus, 1994). Mitochondrial genes, particularly COX1, are widely used markers for the identification of the helminth parasite (Gasser et al., 1999). In addition, the parasites’ genetic population structure can help with epidemiological investigations and focus on their evolutionary history (Campbell et al., 2006; Anantaphruti et al., 2013). Knowing the parasite’s population variations aids in the analysis of transmission patterns (Pajuelo et al., 2017).

Several studies have looked into human taeniid tapeworm genetic variations, but most studies focused on T. solium and human cysticercosis (Rostami et al., 2015). There’s a scarcity of knowledge on genetic variation in T. saginata from various world regions. In 2007, the whole mitochondrial genome of T. saginata was reported (Jeons et al., 2007). T. saginata was genetically characterized in Ethiopia and Thailand (Okamoto et al., 2010; Hailemariam et al., 2014). In surrounding countries, Jahed Khaniki et al. (2009) recorded a low rate of C. bovis infection in Iran (0.25 %), as well as Kus et al. (2014) reported that the prevalence of infection in Turkey ranged from 0.3 to 30 %.In Iraq, thorough molecular investigations are necessary to improve our understanding of such species’ genetic diversity and to develop an efficient parasite vaccine. In Iraq, epidemiological data are scarce, and the available pieces of literature are few; the prevalence of bovine cysticercosis in cattle, buffaloes, and taeniasis in humans were recorded in Iraqi province (San & Zana, 2017; Al-Jadar & Hayatee 1988; Kadir & Salman, 1999; Musa, 2017; Al-Saqur et al., 2020).Because genetic information on Iraqi T. saginata isolates is scarce, this study was performed using COX1 sequences to analyze the intra-specific variation of T. saginata isolates acquired from cattle in the Sulaymaniyah province of Iraq.

Materials and Methods

From December 2020 until May 2021, 37 T. saginata cysts were obtained from cattle in the Modern Sulaimani Slaughterhouse in the Sulaymaniyah district of Iraq. The specimens were disinfected and preserved using 70 % ethyl alcohol. Following the manufacturer’s instructions, genomic DNA was extracted from each scolex using the EasyPureTM Genomic DNA kit (Trans Gen Biotech Co., China) and stored at -20°C. JB3 (forward): 5′-TTTTTTGGG-CATCCTGAGGTTTAT-3′ and JB4.5 (reverse):5′-TAAAGAAAGAA-CATAATGAAAATG-3′ were employed for amplifying a 400-bp-long mitochondrial COX1 gene fragment (Bowles et al., 1992). The amplification was carried out with f-Pfu DNA polymerase (SBS Genetech Co., China) under the same circumstances as Rostami et al. (2015).

SiMax PCR Products/Agarose Gel Purification Kit was used to purify the purified DNA fragments from agarose gel (SBS Genetech Co.). An ABI -3730XL capillary machine was used to sequence the purified DNA (Macrogen Inc., South Korea). In BioEdit software, sequences were aligned with ClustalW multiple sequence alignments (Hall, 1999). Also, the representative COX1 nucleotide sequences have been submitted to the NCBI and are accessible in the Gen-Bank database under the accession numbers OK036447 – OK036451.Using the maximum likelihood method, a phylogenic tree was generated based on the reference sequences of T. saginata and related species (Supplementary Table 1). Genetic distances were estimated using Kimura’s 2-parameter model, and the tree topology’s robustness was assessed using a bootstrap value of 1000 repetitions using datasets available in MEGA 7 version 7. (Kumar et al., 2016). The maximal composite possibility model has been utilized to calculate the evolutionary divergence regarding nucleotide sequences of T. saginata from the present and previously published studies for further analysis (Kumar et al., 2016).

Ethical Approval and/or Informed Consent

The Ethical Committee approved the study protocol of the University of Sulaimani’s Veterinary Medicine College. All the samples used in this study were taken post-mortem from discarded infected carcasses unfit for human consumption. No animals were killed in the course of this investigation.

Results

The COX1 gene was successfully amplified in all 37 samples. A 384-bp fragment was obtained after the sequences’ trimming and editing. The COX1 gene sequence analysis revealed five distinct haplotypes were identified, designated as IQTS-H1 (n=17), IQTS-H2 (n=8), IQTS-H3 (n=6), IQTS-H4 (n=4), and IQTS-H5 (n=2) (Supplementary Table 2). The pairwise evolutionary divergence between different COX1 haplotypes has been found to range between 0.005 – 0.013, whereas the available nucleotide variation among all five haplotypes is 0.000 – 0.018 (Table 1). In total, nine mutations in the COX1 gene were found in nine segregation sites. The Maximum likelihood approach was used to create a phylogram based on COXI gene sequences. Phylogenetic relationships revealed that all T. saginata haplotypes had been clustered in a single clade, with Korean and Iranian isolates sharing a high degree of closeness (Fig. 1).

Fig.1

Phylogenetic relation of T. saginata from the present study and other taeniids. Phylogenetic tree was constructed using maximum likelihood method (Kimura’s 2-parameter model) based on partial COX1 sequences. Sequences reported in the present study are shown as IQTS-H1– IQTS-H5 with accession numbers (OK036447– OK036451), respectively.

T. saginata and other taeniids COX1 nucleotide sequences from GenBank were utilized for genetic diversity and phylogeny.

Taeniid parasitesGenBank accession no.OriginHostAuthor (reference)
T. saginataAY684274KoreaHumanJeon et al., 2007
T. saginataAB533173ThailandHumanOkamoto, 2016 unpublished
T. saginataAB465242ThailandHumanOkamoto et al., 2010
T. saginataJQ756969–JQ756979IranCattleRostami et al., 2015
T. asiaticaAB597287JapanHumanYamasaki et al., 2021
T. soliumAB066491EcuadorPigNakao et al., 2002
T. multicepsJX535576ChinaSheepLi et al., 2013
T. hydatigenaMT784895ChinaDogOhiolei et al., 2021
Echinococcus granulosusMW214711IranSheepBabaei et al., 2021

Depending on mitochondrial COX1 sequences and accession numbers, the distribution pattern related to T. saginata haplotypes in Iraqi cattle.

Taenia saginata haplotypesNo. of samples (n)GenBank accession no.
IQTS-H117OK036447
IQTS-H28OK036448
IQTS-H36OK036449
IQTS-H44OK036450
IQTS-H52OK036451

Pairwise evolutionary divergence in COX1 gene sequences between T. saginata and other taeniids.

123456789101112131415161718192021222324
1IQTS-H1:OK036447
2IQTS-H2:OK0364480.005
3IQTS-H3:OK0364490.0050.011
4IQTS-H4:OK0364500.0050.0110.010
5IQTS-H5:OK0364510.0080.0130.0130.013
6T.saginata:JQ756969(Iran)0.0000.0050.0050.0050.008
7T.saginata:JQ756970(Iran)0.0030.0080.0030.0080.0110.003
8T.saginata:JQ756971(Iran)0.0030.0030.0080.0080.0110.0030.005
9T.saginata:JQ756972(Iran)0.0030.0080.0080.0030.0100.0030.0050.005
10T.saginata:JQ756973(Iran)0.0030.0030.0080.0080.0110.0030.0050.0050.005
11T.saginata:JQ756974(Iran)0.0030.0080.0080.0030.0110.0030.0050.0050.0050.005
12T.saginata:JQ756975(Iran)0.0110.0160.0050.0160.0180.0110.0080.0130.0130.0130.013
13T.saginata:JQ756976(Iran)0.0050.0110.0110.0110.0130.0050.0080.0080.0080.0080.0080.016
14T.saginata:JQ756977(Iran)0.0080.0130.0130.0130.0160.0080.0100.0100.0100.0100.0100.0180.013
15T.saginata:JQ756978(Iran)0.0130.0180.0180.0180.0100.0130.0160.0160.0160.0160.0160.0240.0180.018
16T.saginata:JQ756979(Iran)0.0050.0050.0110.0110.0080.0050.0080.0030.0080.0080.0080.0160.0110.0130.018
17T.saginata:AB465242(Thailand)0.0030.0080.0080.0080.0110.0030.0050.0050.0050.0050.0050.0130.0080.0100.0160.008
18T.saginata:AB533173(Thailand)0.0030.0030.0080.0080.0110.0030.0050.0000.0050.0050.0050.0130.0080.0100.0160.0030.005
19T.asiatica:AB597287(Japan)0.0270.0270.0320.0320.0350.0270.0290.0240.0290.0290.0290.0380.0320.0350.0380.0270.0290.024
20T.saginata:AY684274(Korea)0.0000.0050.0050.0050.0080.0000.0030.0030.0030.0030.0030.0110.0050.0080.0130.0050.0030.0030.027
21T.solium:AB066491(Ecuador)0.1250.1190.1320.1320.1280.1250.1290.1220.1280.1220.1290.1380.1290.1350.1380.1190.1290.1220.1380.125
22T.multiceps:JX535576(China)0.0580.0580.0630.0630.0660.0580.0610.0550.0600.0610.0610.0690.0630.0660.0720.0580.0610.0550.0750.0580.107
23T.hydatigena:MT784895(China)0.1240.1270.1310.1310.1340.1240.1270.1270.1270.1240.1270.1370.1240.1340.1370.1310.1270.1270.1430.1240.1460.134
24E.granulosus:MW214711(Iran)0.2160.2120.2230.2190.2190.2160.2190.2120.2190.2160.2160.2300.2190.2190.2300.2090.2120.2120.2340.2160.2120.2370.189
Discussion

Phylogenetic studies of distinct Taenia species have applied various genomic areas, such as 18-S and 28-S ribosomal RNA, in addition to the mitochondrial genes (Hoberg, 2006; Yan et al., 2013). In addition, sequence fragment analysis depending on PCR synthesis of such taeniids’ DNA is one of the molecular methods frequently employed for phylogenetic investigations (Nickish-Rosenegk et al., 1999). Gonzalez et al. (2011) sequenced the appropriate sequences from all taeniid isolates after PCR-amplifying them using particular primers.

This work studied the mitochondrial COX1 gene diversity of 37 T. saginata cattle specimens from Sulaymaniyah, Iraq. COX1 sequence analysis revealed nine nucleotide substitutions, three of which have been nucleotide transversions, in five T. saginata haplotypes. The haplotypes detected eight amino acid alterations attributable to eight nucleotide substitutions (Table 2). There is no indication that cytochrome c oxidase amino acid composition changes impact the parasite adaptability or enzyme’s function. Yet, it was demonstrated in other parasite species that a single amino acid change could influence the biological fitness of an organism (Tachibana et al., 2004; Otsuki et al., 2009). COX1 nucleotide variation was determined to be 0.027 – 0.134 across T. saginata isolates from this investigation and six other Taenia species. Bowles and McManus (1994) and Rostami et al. (2015) calculated the predicted nucleotide variations in COX1 in genus Taenia to be 0.025 – 0.158 and 0.026 – 0.141, respectively. Compared to other haplotypes of such taeniid, COX1 of T. saginata showed a relatively low degree of variation. Similar results were observed by Abuseir et al. (2018) in Germany. In contrast, other studies on the genetic divergence of T. saginata in Asia have revealed considerably higher haplotype diversity in the COX1 gene (Anantaphruti et al.,2013; Sanpool et al., 2017). Furthermore, pairwise comparisons of T. saginata from the experiment with existing mitochondrial sequences from Iranian (Rostami et al., 2015) and Korean (Jeon et al., 2007) cattle revealed 0.000 – 0.018 and 0.000 – 0.008 nucleotide differences in COX1 gene, respectively (Table 1). As a result, the phylogram revealed that the Iraqi T. saginata in this study was equivalent to other T. saginata, sharing 98.18 – 99.74 % identity with the ones from Iran and Korea. The phylogenetic analysis produced a dendrogram clustered all COX1 haplotypes uniformly to a single clade with a T. saginata reference sequence (AY684274 accession number). As distinct sub-clade, other types of the taeniids, including Echinococcus granulosus, T. solium, T. multiceps, T. asiatica, and T. hydatigena, were grouped together.

The five haplotypes of T. saginata COX1 sequences from Iraqi cattle were put to comparison with reference COX1 sequence from Korea (accession number AY684274) for the substitutions of the nucleotide and corresponding amino acid variations.

Haplotypes of the current studyPosition of nucleic acid substitutionAmino acid substitution
IQTS-H1–*–*
IQTS-H2197 (A→G)Glu→Gly
332 (C→T)Ala→Val
IQTS-H370 (T→A)Leu→Met
356 (T→C)Ile→Thr
IQTS-H410 (G→C)Ala→Leu
371 (T→C)Leu→Ser
IQTS-H539 (C→T)Val→Val
146 (G→A)Arg→Lys
195 (G→C)Gln→His

Understanding the control and epidemiology of parasitic infections requires molecular characterization of veterinary and medical significance parasites. T. saginata can be defined as one of the human and cattle zoonotic parasites with a global range (Rostmai et al., 2015). In the molecular epidemiological surveys of the echinococcosis/taeniasis in various host assemblages and geographical settings, DNA methods are often utilized to identify Echinococcus and Taenia species, strains, and subspecies (McManus, 2006).

Conclusion

The current study added new data about T. saginata mt-DNA cattle haplotypes in Iraq. T. saginata was made up of five haplotypes clustered in a single clade, according to phylogenetic analysis of the COX1 gene calculated using maximum likelihood. Four new strains with new mutations have been discovered in the research area. More thorough research on nuclear genes is needed to fully understand the amount and relevance of genetic variations within populations of the T. saginata.

Fig.1

Phylogenetic relation of T. saginata from the present study and other taeniids. Phylogenetic tree was constructed using maximum likelihood method (Kimura’s 2-parameter model) based on partial COX1 sequences. Sequences reported in the present study are shown as IQTS-H1– IQTS-H5 with accession numbers (OK036447– OK036451), respectively.
Phylogenetic relation of T. saginata from the present study and other taeniids. Phylogenetic tree was constructed using maximum likelihood method (Kimura’s 2-parameter model) based on partial COX1 sequences. Sequences reported in the present study are shown as IQTS-H1– IQTS-H5 with accession numbers (OK036447– OK036451), respectively.

The five haplotypes of T. saginata COX1 sequences from Iraqi cattle were put to comparison with reference COX1 sequence from Korea (accession number AY684274) for the substitutions of the nucleotide and corresponding amino acid variations.

Haplotypes of the current study Position of nucleic acid substitution Amino acid substitution
IQTS-H1 –* –*
IQTS-H2 197 (A→G) Glu→Gly
332 (C→T) Ala→Val
IQTS-H3 70 (T→A) Leu→Met
356 (T→C) Ile→Thr
IQTS-H4 10 (G→C) Ala→Leu
371 (T→C) Leu→Ser
IQTS-H5 39 (C→T) Val→Val
146 (G→A) Arg→Lys
195 (G→C) Gln→His

T. saginata and other taeniids COX1 nucleotide sequences from GenBank were utilized for genetic diversity and phylogeny.

Taeniid parasites GenBank accession no. Origin Host Author (reference)
T. saginata AY684274 Korea Human Jeon et al., 2007
T. saginata AB533173 Thailand Human Okamoto, 2016 unpublished
T. saginata AB465242 Thailand Human Okamoto et al., 2010
T. saginata JQ756969–JQ756979 Iran Cattle Rostami et al., 2015
T. asiatica AB597287 Japan Human Yamasaki et al., 2021
T. solium AB066491 Ecuador Pig Nakao et al., 2002
T. multiceps JX535576 China Sheep Li et al., 2013
T. hydatigena MT784895 China Dog Ohiolei et al., 2021
Echinococcus granulosus MW214711 Iran Sheep Babaei et al., 2021

Pairwise evolutionary divergence in COX1 gene sequences between T. saginata and other taeniids.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 IQTS-H1:OK036447
2 IQTS-H2:OK036448 0.005
3 IQTS-H3:OK036449 0.005 0.011
4 IQTS-H4:OK036450 0.005 0.011 0.010
5 IQTS-H5:OK036451 0.008 0.013 0.013 0.013
6 T.saginata:JQ756969(Iran) 0.000 0.005 0.005 0.005 0.008
7 T.saginata:JQ756970(Iran) 0.003 0.008 0.003 0.008 0.011 0.003
8 T.saginata:JQ756971(Iran) 0.003 0.003 0.008 0.008 0.011 0.003 0.005
9 T.saginata:JQ756972(Iran) 0.003 0.008 0.008 0.003 0.010 0.003 0.005 0.005
10 T.saginata:JQ756973(Iran) 0.003 0.003 0.008 0.008 0.011 0.003 0.005 0.005 0.005
11 T.saginata:JQ756974(Iran) 0.003 0.008 0.008 0.003 0.011 0.003 0.005 0.005 0.005 0.005
12 T.saginata:JQ756975(Iran) 0.011 0.016 0.005 0.016 0.018 0.011 0.008 0.013 0.013 0.013 0.013
13 T.saginata:JQ756976(Iran) 0.005 0.011 0.011 0.011 0.013 0.005 0.008 0.008 0.008 0.008 0.008 0.016
14 T.saginata:JQ756977(Iran) 0.008 0.013 0.013 0.013 0.016 0.008 0.010 0.010 0.010 0.010 0.010 0.018 0.013
15 T.saginata:JQ756978(Iran) 0.013 0.018 0.018 0.018 0.010 0.013 0.016 0.016 0.016 0.016 0.016 0.024 0.018 0.018
16 T.saginata:JQ756979(Iran) 0.005 0.005 0.011 0.011 0.008 0.005 0.008 0.003 0.008 0.008 0.008 0.016 0.011 0.013 0.018
17 T.saginata:AB465242(Thailand) 0.003 0.008 0.008 0.008 0.011 0.003 0.005 0.005 0.005 0.005 0.005 0.013 0.008 0.010 0.016 0.008
18 T.saginata:AB533173(Thailand) 0.003 0.003 0.008 0.008 0.011 0.003 0.005 0.000 0.005 0.005 0.005 0.013 0.008 0.010 0.016 0.003 0.005
19 T.asiatica:AB597287(Japan) 0.027 0.027 0.032 0.032 0.035 0.027 0.029 0.024 0.029 0.029 0.029 0.038 0.032 0.035 0.038 0.027 0.029 0.024
20 T.saginata:AY684274(Korea) 0.000 0.005 0.005 0.005 0.008 0.000 0.003 0.003 0.003 0.003 0.003 0.011 0.005 0.008 0.013 0.005 0.003 0.003 0.027
21 T.solium:AB066491(Ecuador) 0.125 0.119 0.132 0.132 0.128 0.125 0.129 0.122 0.128 0.122 0.129 0.138 0.129 0.135 0.138 0.119 0.129 0.122 0.138 0.125
22 T.multiceps:JX535576(China) 0.058 0.058 0.063 0.063 0.066 0.058 0.061 0.055 0.060 0.061 0.061 0.069 0.063 0.066 0.072 0.058 0.061 0.055 0.075 0.058 0.107
23 T.hydatigena:MT784895(China) 0.124 0.127 0.131 0.131 0.134 0.124 0.127 0.127 0.127 0.124 0.127 0.137 0.124 0.134 0.137 0.131 0.127 0.127 0.143 0.124 0.146 0.134
24 E.granulosus:MW214711(Iran) 0.216 0.212 0.223 0.219 0.219 0.216 0.219 0.212 0.219 0.216 0.216 0.230 0.219 0.219 0.230 0.209 0.212 0.212 0.234 0.216 0.212 0.237 0.189

Depending on mitochondrial COX1 sequences and accession numbers, the distribution pattern related to T. saginata haplotypes in Iraqi cattle.

Taenia saginata haplotypes No. of samples (n) GenBank accession no.
IQTS-H1 17 OK036447
IQTS-H2 8 OK036448
IQTS-H3 6 OK036449
IQTS-H4 4 OK036450
IQTS-H5 2 OK036451

Abuseir, S., Schicht, S., Springer, A., Nagel-Kohl, U., Strube, C. (2018): Genetic characterization of Taenia saginata cyst isolates from Germany. Vector Borne Zoonotic Dis, 18(8): 433–439.DOI: 10.1089/vbz.2017.2218 Abuseir S. Schicht S. Springer A. Nagel-Kohl U. Strube C. 2018 Genetic characterization of Taenia saginata cyst isolates from Germany Vector Borne Zoonotic Dis, 188 433 439 10.1089/vbz.2017.221829893621DOI öffnenSearch in Google Scholar

Abuseir, S., Kühne, M., Schnieder, T., Klein, G., Epe, C. (2007): Evaluation of a serological method for the detection of Taenia saginata cysticercosis using serum and meat juice samples. Parasitol Res, 101(1): 131–137. DOI: 10.1007/s00436-006-0429-z Abuseir S. Kühne M. Schnieder T. Klein G. Epe C. 2007 Evaluation of a serological method for the detection of Taenia saginata cysticercosis using serum and meat juice samples Parasitol Res 1011 131 137 10.1007/s00436-006-0429-z17216238DOI öffnenSearch in Google Scholar

Abuseir, S., Epe, C., Schnieder, T., Klein, G., Kühne, M. (2006): Visual diagnosis of Taenia saginata cysticercosis during meat inspection: is it unequivocal? Parasitol Res, 99(4): 405–409.DOI: 10.1007/s00436-006-0158-3 Abuseir S. Epe C. Schnieder T. Klein G. Kühne M. 2006 Visual diagnosis of Taenia saginata cysticercosis during meat inspection: is it unequivocal? Parasitol Res 994 405 409 10.1007/s00436-006-0158-316583204DOI öffnenSearch in Google Scholar

Al-Jadar, Z.H., Hayatee, Z.G. (1988): Studies on the prevalence of bovine cysticercosis in Iraq. J Vet Parasitol, 2: 83–85 Al-Jadar Z.H. Hayatee Z.G. 1988 Studies on the prevalence of bovine cysticercosis in Iraq J Vet Parasitol, 2 83 85Search in Google Scholar

Al-Saqur, I., Harith, S., Amjed, Q., Hussin, S. (2020): Prevalence of gastrointestinal parasites in Iraq during 2015. In proceedings: AIP Publishing LLC, 2290(1): 020005. DOI: 10.1063/5.0027394 Al-Saqur I. Harith S. Amjed Q. Hussin S. 2020 Prevalence of gastrointestinal parasites in Iraq during 2015 In proceedings: AIP Publishing LLC, 22901 020005 10.1063/5.0027394DOI öffnenSearch in Google Scholar

Anantaphruti, M., Thaenkham, U., Kusolsuk, T., Maipanich, W., Saguankiat, S., Pubampen, S., Phuphisut, O. (2013): Genetic variation and population genetics of Taenia saginata in north and northeast Thailand in relation to Taenia asiatica J Parasitol Res, 2013: 310605. DOI: 10.1155/2013/310605 Anantaphruti M. Thaenkham U. Kusolsuk T. Maipanich W. Saguankiat S. Pubampen S. Phuphisut O. 2013 Genetic variation and population genetics of Taenia saginata in north and northeast Thailand in relation to Taenia asiatica J Parasitol Res, 2013 310605 10.1155/2013/310605370726523864933DOI öffnenSearch in Google Scholar

Babaei, Z., Taherkhani, R., Barazesh, A., Taherzadeh, M., Khorami, S., Fouladvand, M. (2021): Genotyping and phylogenetic analysis of hydatid cysts isolated from livestock in Bushehr province, Iran. J Parasit Dis, 45(1): 197–203. DOI: 10.1007/s12639-020-01293-7 Bowles, J., Blair, D., McManus, D.P. (1992): Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol, 54(2): 165–173. DOI: 10.1016/0166-6851(92)90109-w Babaei Z. Taherkhani R. Barazesh A. Taherzadeh M. Khorami S. Fouladvand M. 2021 Genotyping and phylogenetic analysis of hydatid cysts isolated from livestock in Bushehr province, Iran J Parasit Dis 451 197 203 10.1007/s12639-020-01293-7 Bowles, J., Blair, D., McManus, D.P. (1992): Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54(2) 165-173 10.1016/0166-6851(92)90109-w792126333746404DOI öffnenSearch in Google Scholar

Bowles, J., McManus, D.P. (1994): Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans. Am J Trop Med Hyg, 50(1): 33–44. DOI: 10.4269/ajtmh.1994.50.1.TM0500010033 Bowles J. McManus D.P. 1994 Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans Am J Trop Med Hyg, 501 33 44 10.4269/ajtmh.1994.50.1.TM0500010033DOI öffnenSearch in Google Scholar

Campbell, G., Garcia, H.H., Nakao, M., Ito, A., Craig, P.S. (2006): Genetic variation in Taenia solium Parasitol Int, 55: S121 – S126. DOI: 10.1016/j.parint.2005.11.019 Campbell G. Garcia H.H. Nakao M. Ito A. Craig P.S. 2006 Genetic variation in Taenia solium Parasitol Int 55 S121 S126 10.1016/j.parint.2005.11.01916352464DOI öffnenSearch in Google Scholar

Dorny, P., Vercamen, F., Brandt, J., Vansteenkiste, W., Berkvens, D., Geerts, S. (2000): Sero-epidemiological study of Taenia saginata cysticercosis in Belgian cattle. Vet Parasitol, 88: 43–49. DOI: 10.1016/S0304-4017(99)00196-X Dorny P. Vercamen F. Brandt J. Vansteenkiste W. Berkvens D. Geerts S. 2000 Sero-epidemiological study of Taenia saginata cysticercosis in Belgian cattle Vet Parasitol 88 43 49 10.1016/S0304-4017(99)00196-XDOI öffnenSearch in Google Scholar

Gasser, R. B., Zhu, X., McManus, D. P. (1999): NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). Int J Parasitol, 29(12): 1965–1970. DOI: 10.1016/s0020-7519(99)00153-8 Geysen, D., Kanobana, K., Victor, B., Rodriguez-Hidalgo, R., De Borchgrave, J., Brandt, J., Dorny, P. (2007): Validation of meat inspection results for Taenia saginata cysticercosis by PCR–restriction fragment length polymorphism. J Food Prot, 70(1): 236–240. DOI: 10.4315/0362-028x-70.1.236 Gasser R. B. Zhu X. McManus D. P. 1999 NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda) Int J Parasitol 2912 1965 1970 10.1016/s0020-7519(99)00153-8 Geysen, D., Kanobana, K., Victor, B., Rodriguez-Hidalgo, R., De Borchgrave, J., Brandt, J., Dorny, P. (2007): Validation of meat inspection results for Taenia saginata cysticercosis by PCR–restriction fragment length polymorphism. J Food Prot, 70(1) 236-240 10.4315/0362-028x-70.1.23610961852DOI öffnenSearch in Google Scholar

González, L. M., Ramiro, R., García, L., Parkhouse, R. M. E., Mc-Manus, D. P., Gárate, T. (2011): Genetic variability of the 18 kDa/HP6 protective antigen in Taenia saginata and Taenia asiatica: implications for vaccine development. Mol Biochem Parasitol, 176(2): 131–134. DOI: 10.1016/j.molbiopara.2010.12.014 González L. M. Ramiro R. García L. Parkhouse R. M. E. Mc-Manus D. P. Gárate T. 2011 Genetic variability of the 18 kDa/HP6 protective antigen in Taenia saginata and Taenia asiatica: implications for vaccine development Mol Biochem Parasitol 1762 131 134 10.1016/j.molbiopara.2010.12.01421232558DOI öffnenSearch in Google Scholar

González, L.M., Montero, E., Morakote, N., Puente, S., De Tuesta, J.L.D., Serra, T., López-Velez, R., McManus, D.P., Harrison, L.J., Parkhouse, R.M.E. and Gárate, T.(2004): Differential diagnosis of Taenia saginata and Taenia saginata asiatica taeniasis through PCR. Diagn Microbiol Infect Dis, 49(3): 183–188. DOI: 10.1016/j.diagmicrobio.2004.03.013 González L.M. Montero E. Morakote N. Puente S. De Tuesta J.L.D. Serra T. López-Velez R. McManus D.P. Harrison L.J. Parkhouse R.M.E. and Gárate T.2004 Differential diagnosis of Taenia saginata and Taenia saginata asiatica taeniasis through PCR Diagn Microbiol Infect Dis 493 183 188 10.1016/j.diagmicrobio.2004.03.01315246508DOI öffnenSearch in Google Scholar

Hailemariam, Z., Nakao, M., Menkir, S., Lavikainen, A., Iwaki, T., Yanagida, T., Okamoto, M. and Ito, A. (2014): Molecular identification of species of Taenia causing bovine cysticercosis in Ethiopia. J Helminthol, 88(3): 376–380. DOI: 10.1017/S0022149X13000138 Hall T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41: 95–98. DOI: 10.14601/Phytopathol_Mediterr-14998U1.29 Hailemariam Z. Nakao M. Menkir S. Lavikainen A. Iwaki T. Yanagida T. Okamoto M. and Ito A. 2014 Molecular identification of species of Taenia causing bovine cysticercosis in Ethiopia J Helminthol 883 376 380 10.1017/S0022149X13000138 Hall T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41 95-98 10.14601/Phytopathol_Mediterr-14998U1.2923452760DOI öffnenSearch in Google Scholar

Hoberg, E.P. (2006): Phylogeny of Taenia: species definitions and origins of human parasites. Parasitol Int, 55: S23 – S30. DOI: 10.1016/j.parint.2005.11.049 Hoberg E.P. 2006 Phylogeny of Taenia: species definitions and origins of human parasites Parasitol Int 55 S23 S30 10.1016/j.parint.2005.11.04916371252DOI öffnenSearch in Google Scholar

Jahed Khaniki, G.R., Raei, M., Kia, E.B., MotevalliHaghi, A., Selseleh, M. (2010): Prevalence of bovine cysticercosis in slaughtered cattle in Iran. Trop Anim Health Prod, 42(2): 141–143. DOI: 10.1007/s11250-009-9399-3 Jahed Khaniki G.R. Raei M. Kia E.B. MotevalliHaghi A. Selseleh M. ( 2010 Prevalence of bovine cysticercosis in slaughtered cattle in Iran Trop Anim Health Prod, 422 141 143 10.1007/s11250-009-9399-319568950DOI öffnenSearch in Google Scholar

Jeon, H.K., Kim, K.H., Eom, K.S. (2007): Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica Parasitol Int, 56(3): 243–246. DOI: 10.1016/j.parint.2007.04.001 Jeon H.K. Kim K.H. Eom K.S. 2007 Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T solium and T. asiatica Parasitol Int, 563 243 246 10.1016/j.parint.2007.04.00117499016DOI öffnenSearch in Google Scholar

Kadir, M., Salman, Y. (1999): Prevalence of intestinal parasites among primary school children in Al-Taameem Province. Iraq. Ann Coll Med Mosul, 25: 94–98 Kadir M. Salman Y. 1999 Prevalence of intestinal parasites among primary school children in Al-Taameem Province Iraq. Ann Coll Med Mosul, 25 94 98Search in Google Scholar

Kumar, S., Stecher, G., Tamura, K.(2016): MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 33: 1870–1874. DOI: 10.1093/molbev/msw054 Kumar S. Stecher G. Tamura K.2016 MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol Biol Evol, 33 1870 1874 10.1093/molbev/msw054821082327004904DOI öffnenSearch in Google Scholar

Kus, F.S., Sevimli, F.K., Miman, Ö. (2014): Cysticercus bovis in Turkey and its importance from the public health aspect. Turkiye Parazitol Derg, 38(1): 41. DOI: 10.5152/tpd.2014.3244 Kus F.S. Sevimli F.K. Miman Ö. 2014 Cysticercus bovis in Turkey and its importance from the public health aspect Turkiye Parazitol Derg, 381 41 10.5152/tpd.2014.324424659701DOI öffnenSearch in Google Scholar

Li, W.H., Jia, W.Z., Qu, Z.G., Xie, Z.Z., Luo, J.X., Yin, H., Sun, X.L., Blaga, R., Fu, B.Q. (2013): Molecular characterization of Taenia multiceps isolates from Gansu Province, China, by sequencing of mitochondrial cytochrome C oxidase subunit 1. Korean J Parasitol, 51(2): 197. DOI: 10.3347/kjp.2013.51.2.197 Li W.H. Jia W.Z. Qu Z.G. Xie Z.Z. Luo J.X. Yin H. Sun X.L. Blaga R. Fu B.Q. 2013 Molecular characterization of Taenia multiceps isolates from Gansu Province, China, by sequencing of mitochondrial cytochrome C oxidase subunit 1 Korean J Parasitol, 512 197 10.3347/kjp.2013.51.2.197366206323710087DOI öffnenSearch in Google Scholar

McManus, D.P. (2006): Molecular discrimination of taeniid cestodes. Parasitol Int, 55: S31 – S37. DOI: 10.1016/j.parint.2005.11.004 McManus D.P. 2006 Molecular discrimination of taeniid cestodes Parasitol Int 55 S31 S37 10.1016/j.parint.2005.11.00416337179DOI öffnenSearch in Google Scholar

Musa, I.S. (2017): Incidence of helminthiasis in humans in Iraq. Karbala Int J Mod Sci, 3(4): 267–271. DOI: 10.1016/j.kijoms.2017.08.001. Musa I.S. 2017 Incidence of helminthiasis in humans in Iraq Karbala Int J Mod Sci, 34 267 271 10.1016/j.kijoms.2017.08.001.DOI öffnenSearch in Google Scholar

Nakao, M., Okamoto, M., Sako, Y., Yamasaki, H., Nakaya, K., Ito, A. (2002): A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm Taenia solium worldwide. Parasitology, 124(6): 657–662. DOI: 10.1017/s0031182002001725 Nakao M. Okamoto M. Sako Y. Yamasaki H. Nakaya K. Ito A. 2002 A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm Taenia solium worldwide Parasitology 1246 657 662 10.1017/s003118200200172512118722DOI öffnenSearch in Google Scholar

Nickisch-Rosenegk, M., Silva-Gonzalez, R., Lucius, R. (1999): Modification of universal 12 rDNA primers for specific amplification of contaminated Taenia spp.(cestoda) gDNA enabling phylogenetic studies. Parasitol Res, 85: 819–825. DOI: 10.1007/s004360050638 Nickisch-Rosenegk M. Silva-Gonzalez R. Lucius R. 1999 Modification of universal 12 rDNA primers for specific amplification of contaminated Taenia spp.(cestoda) gDNA enabling phylogenetic studies Parasitol Res 85 819 825 10.1007/s00436005063810494807DOI öffnenSearch in Google Scholar

Ogunremi, O., Benjamin, J. (2010): Development and field evaluation of a new serological test for Taenia saginata cysticercosis. Vet. Parasitol., 168(1–2): 93–101. DOI: 10.1016/j.vetpar.2009.12.014 Ohiolei, J.A., Yan, H.B., Li, L., Li, W.H., Wu, Y.D., Alvi, M.A., Zhang, N.Z., Fu, B.Q., Wang, X.L., Jia, W.Z. (2021): A new molecular nomenclature for Taenia hydatigena: mitochondrial DNA sequences reveal sufficient diversity suggesting the assignment of major haplotype divisions. Parasitology, 148(3): 311–326. DOI: 10.1017/S003118202000205X Ogunremi O. Benjamin J. 2010 Development and field evaluation of a new serological test for Taenia saginata cysticercosis Vet. Parasitol., 1681–2 93 101 10.1016/j.vetpar.2009.12.014 Ohiolei, J.A., Yan, H.B., Li, L., Li, W.H., Wu, Y.D., Alvi, M.A., Zhang, N.Z., Fu, B.Q., Wang, X.L., Jia, W.Z. (2021): A new molecular nomenclature for Taenia hydatigena: mitochondrial DNA sequences reveal sufficient diversity suggesting the assignment of major haplotype divisions. Parasitology 148(3) 311-326 10.1017/S003118202000205X20083357DOI öffnenSearch in Google Scholar

Okamoto, M., Nakao, M., Blair, D., Anantaphruti, M.T., Waikagul, J., Ito, A. (2010): Evidence of hybridization between Taenia saginata and Taenia asiatica. Parasitol Int, 59(1): 70–74. DOI: 10.1016/j.parint.2009.10.007 Okamoto M. Nakao M. Blair D. Anantaphruti M.T. Waikagul J. Ito A. 2010 Evidence of hybridization between Taenia saginata and Taenia asiatica Parasitol Int, 591 70 74 10.1016/j.parint.2009.10.00719874910DOI öffnenSearch in Google Scholar

Otsuki, H., Kaneko, O., Thongkukiatkul, A., Tachibana, M., Iriko, H., Takeo, S., Tsuboi, T., Torii, M. (2009): Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence. Proc Natl Acad Sci, 106(17): 7167–7172. DOI: 10.1073/pnas.0811313106 Otsuki H. Kaneko O. Thongkukiatkul A. Tachibana M. Iriko H. Takeo S. Tsuboi T. Torii M. 2009 Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence Proc Natl Acad Sci 10617 7167 7172 10.1073/pnas.0811313106267843319346470DOI öffnenSearch in Google Scholar

Pajuelo, M.J., Eguiluz, M., Roncal, E., Quiñones-García, S., Clipman, S.J., Calcina, J., Gavidia, C.M., Sheen, P., Garcia, H.H., Gilman, R.H., Gonzalez, A.E.(2017): Genetic variability of Taenia solium­cysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markers. PLoS Negl Trop Dis, 11(12): e0006087. DOI: 10.1371/journal.pntd.0006087 Pajuelo M.J. Eguiluz M. Roncal E. Quiñones-García S. Clipman S.J. Calcina J. Gavidia C.M. Sheen P. Garcia H.H. Gilman R.H.Gonzalez A.E.2017 Genetic variability of Taenia solium­cysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markers PLoS Negl Trop Dis 1112 e0006087 10.1371/journal.pntd.0006087574620229284011DOI öffnenSearch in Google Scholar

Rostami, S., Salavati, R., Beech, R. N., Babaei, Z., Sharbatkhori, M., Harandi, M. F. (2015): Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences. Parasitol Res, 114(4): 1365–1376. DOI: 10.1007/s00436-015-4314-5 Rostami S. Salavati R. Beech R. N. Babaei Z. Sharbatkhori M. Harandi M. F. 2015 Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences Parasitol Res 1144 1365 1376 10.1007/s00436-015-4314-525687521DOI öffnenSearch in Google Scholar

San, A.M., Zana, H.M. (2017): Molecular detection of cysticercosis of beef carcasses in Sulaimani slaughterhouse. J Bacteriol Parasitol, 8: 2 San A.M. Zana H.M. 2017 Molecular detection of cysticercosis of beef carcasses in Sulaimani slaughterhouse J Bacteriol Parasitol, 8 2Search in Google Scholar

Sanpool, O., Rodpai, R., Intapan, P.M., Sadaow, L., Thanchomnang, T., Laymanivong, S., Maleewong, W. and Yamasaki, H. (2017): Genetic diversity of Taenia saginata (Cestoda: Cyclophyllidea) from Lao People’s Democratic Republic and northeastern Thailand based on mitochondrial DNA. Parasit Vectors, 10(1): 1–7. DOI: 10.1186/s13071-017-2079-7 Sanpool O. Rodpai R. Intapan P.M. Sadaow L. Thanchomnang T. Laymanivong S. Maleewong W. and Yamasaki H. 2017 Genetic diversity of Taenia saginata (Cestoda: Cyclophyllidea) from Lao People’s Democratic Republic and northeastern Thailand based on mitochondrial DNA Parasit Vectors, 101 1 7 10.1186/s13071-017-2079-7534619028284223DOI öffnenSearch in Google Scholar

Sato, M.O., Sato, M., Yanagida, T., Waikagul, J., Pongvongsa, T., Sako, Y., Sanguankiat, S., Yoonuan, T., Kounnavang, S., Kawai, S., Ito, A., Okamoto, M. and Moji, K. (2018):Taenia solium Taenia saginata Taenia asiatica, their hybrids and other helminthic infections occurring in a neglected tropical diseases’ highly endemic area in Lao PDR. PLoS Negl Trop Dis, 12(2): e0006260. DOI: 10.1371/journal.pntd.0006260 Sato M.O. Sato M. Yanagida T. Waikagul J. Pongvongsa T. Sako Y. Sanguankiat S. Yoonuan T. Kounnavang S. Kawai S. Ito A. Okamoto M. and Moji K. 2018 Taenia solium Taenia saginata Taenia asiatica, their hybrids and other helminthic infections occurring in a neglected tropical diseases’ highly endemic area in Lao PDR PLoS Negl Trop Dis 122 e0006260 10.1371/journal.pntd.0006260582139929420601DOI öffnenSearch in Google Scholar

Silva, C.V., Costa-Cruz, J.M. (2010): A glance at Taenia saginata infection, diagnosis, vaccine, biological control, and treatment. Infect Disord Drug Targets,10(5): 313–321. DOI: 10.2174/187152610793180894 Silva C.V. Costa-Cruz J.M. 2010 A glance at Taenia saginata infection, diagnosis, vaccine, biological control, and treatment Infect Disord Drug Targets 105 313 321 10.2174/18715261079318089420701576DOI öffnenSearch in Google Scholar

Tachibana, H., Matsumoto, N., Cheng, X. J., Tsukamoto, H., Yoshihara, E. (2004): Improved affinity of a human anti-Entamoeba histolytica Gal/GalNAc lectin Fab fragment by a single amino acid modification of the light chain. Clin Diagn Lab Immunol,11(6): 1085–1088. DOI: 10.1128/CDLI.11.6.1085-1088.2004 Tachibana H. Matsumoto N. Cheng X. J. Tsukamoto H. Yoshihara E. 2004 Improved affinity of a human anti-Entamoeba histolytica Gal/GalNAc lectin Fab fragment by a single amino acid modification of the light chain Clin Diagn Lab Immunol 116 1085 1088 10.1128/CDLI.11.6.1085-1088.200452478815539510DOI öffnenSearch in Google Scholar

Torgerson, P.R. (2013): One world health: socioeconomic burden and parasitic disease control priorities. Vet Parasitol, 195(3–4): 223–232. DOI: 10.1016/j.vetpar.2013.04.004 Torgerson P.R. 2013 One world health: socioeconomic burden and parasitic disease control priorities Vet Parasitol 1953–4 223 232 10.1016/j.vetpar.2013.04.00423628712DOI öffnenSearch in Google Scholar

WHO (2005): WHO/FAO/OIE guidelines for the surveillance, prevention, and control of taeniasis/cysticercosis, edited by Murrell, K.D., Dorny, P., Flisser, A., Geerts, S., Kyvsgard, N.C., McManus, D.P., Nash, T.E., Pawlowski, Z.S. Paris: OIE (World Organisation for Animal Health). Retrieved from https://apps.who.int/iris/handle/10665/43291 WHO 2005 WHO/FAO/OIE guidelines for the surveillance, prevention, and control of taeniasis/cysticercosis edited by Murrell K.D. Dorny P. Flisser A. Geerts S. Kyvsgard N.C. McManus D.P. Nash T.E. Pawlowski Z.S. Paris OIE (World Organisation for Animal Health) Retrieved from https://apps.who.int/iris/handle/10665/43291Search in Google Scholar

Yamasaki, H., Morishima, Y., Sugiyama, H., Okamoto, M. (2021): Current situation of human Taenia asiatica taeniasis in Japan. Parasitol Int, 83: 102340. DOI: 10.1016/j.parint.2021.102340 Yamasaki H. Morishima Y. Sugiyama H. Okamoto M. 2021 Current situation of human Taenia asiatica taeniasis in Japan Parasitol Int 83 102340 10.1016/j.parint.2021.10234033812025DOI öffnenSearch in Google Scholar

Yamasaki, H., Allan, J.C., Sato, M.O., Nakao, M., Sako, Y., Nakaya, K., Qiu, D., Mamuti, W., Craig, P.S., Ito, A. (2004): DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCR.J Clin Microbiol, 42(2): 548–553. DOI: 10.1128/JCM.42.2.548-553.2004 Yamasaki H. Allan J.C. Sato M.O. Nakao M. Sako Y. Nakaya K. Qiu D. Mamuti W. Craig P.S. Ito A. 2004 DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCR J Clin Microbiol 422 548 553 10.1128/JCM.42.2.548-553.200434450014766815DOI öffnenSearch in Google Scholar

Yan, H., Lou, Z., Li, L., Ni, X., Guo, A., Li, H., Zheng, Y., Dyachen ko, V., Jia, W. (2013): The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia Parasitol Res, 112(3): 1343–1347. DOI: 10.1007/s00436-012-3199-9 Yan H. Lou Z. Li L. Ni X. Guo A. Li H. Zheng Y. Dyachen ko V. Jia W. 2013 The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia Parasitol Res 1123 1343 1347 10.1007/s00436-012-3199-923183704DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo