[
Acevedo, F.E., Rivera-Vega, L.J., Chung, S.H., Ray, S. & Felton G.W. (2015). Cues from chewing insects – the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol., 26, 80–86. DOI: 10.1016/j.pbi.2015.05.029.26123394
]Ouvrir le DOISearch in Google Scholar
[
Bilgin, D.D., Zavala, J.A., Zhu, J., Clough, S.J., Ort, D.R. & DeLucia E.H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ., 33(1), 597–613. DOI: 10.1111/j.1365-3040.2010.02167.x.20444224
]Ouvrir le DOISearch in Google Scholar
[
Bond, B.J., Czarnomski, N.M., Cooper, C., Day, M.E. & Michael S.G. (2007). Development decline in height growth in Douglas-fir. Tree Physiol., 27, 441–453. DOI: 10.1093/treephys/27.3.441.17241986
]Ouvrir le DOISearch in Google Scholar
[
Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72, 248–254. DOI: 10.1006/abio.1976.9999942051
]Ouvrir le DOISearch in Google Scholar
[
Canbolat, Ö. (2012). Determination of potential nutritive value of exotic tree leaves in Turkey. Kafkas Üniversitesi Veteriner Fakütesi Dergisi, 18(3), 419–423. DOI:10.9775/kvfd.2011.5584.
]Ouvrir le DOISearch in Google Scholar
[
Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., Lippe, M. & Weber E. (2013). Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol., 101, 1623–1640. DOI: 10.1111/1365-2745.12162.
]Ouvrir le DOISearch in Google Scholar
[
Csóka, G., Stone, G.N. & Melika G. (2017). Non-native gall-inducing insects on forest trees: a global review. Biol. Invasions, 19, 3161–3181. DOI:10.1007/s10530-017-1466-5.
]Ouvrir le DOISearch in Google Scholar
[
Davis, D.R. & De Prins J. (2011). Systematics and biology of the new genus Macrosaccus with descriptions of two new species (Lepidoptera, Gracillariidae). ZooKeys. 98, 29–82. DOI:10.3897/zookeys.98.925.309513221594070
]Ouvrir le DOISearch in Google Scholar
[
Duan, L., Liu, H., Li, X., Xiao, J. & Wang S. (2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magna-porthe oryzae invaded from roots in rice. Physiol. Plant., 152, 486–500. DOI: 10.1111/ppl.12192.24684436
]Ouvrir le DOISearch in Google Scholar
[
Duan, Y.-Y., Song, L.-J., Niu, S.-Q., Huang, T., Yang, G.-H. & Hao W.-F. (2017). Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients. Chinese Journal of Applied Ecology, 28(1), 28–36. DOI:10.13287/j.1001-9332.201701.036.29749185
]Ouvrir le DOISearch in Google Scholar
[
Emebiri, L.C., Tan, M.K., El-Bouhssini, M., Wildman, O., Jighly, A., Tadesse, W. & Ogbonnaya F.C. (2016). QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. Theor. Appl. Genet., 130, 309–318. DOI:10.1007/s00122-016-2812-1.27744491
]Ouvrir le DOISearch in Google Scholar
[
Enescu, C.M. & Dãnescu A. (2013). Black locust (Robinia pseudoacacia L.) – an invasive neophyte in the conventional land reclamation flora in Romania. Bulletin of the Transilvania University of Braşov, 6(55), 23–30.
]Search in Google Scholar
[
Gill, R.S., Gupta, A.K., Taggar, G.K. & Taggar M.S. (2010). Role of oxidative enzymes in plant defenses against insect herbivory. Acta Phytopathol. Entomol. Hung., 45, 277–90. DOI:10.1556/APhyt.45.2010.2.4.
]Ouvrir le DOISearch in Google Scholar
[
Guo, X., Ren, X., Eller, F., Li, M-Y, Wang, R-Q, Du, N., & Guo W-H. (2018). Higher phenotypic plasticity does not confer higher salt resistance to Robinia pseudoacacia than Amorpha fruticosa. Acta Physiol. Plant., 4, 40–79. DOI:10.1007/s11738-018-2654-3.
]Ouvrir le DOISearch in Google Scholar
[
Heng-Moss, T.M., Sarath, G., Baxendale, F.P., Novak, D., Bose, S., Ni, X. & Quisenberry S. (2004). Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. J. Econ. Entomol., 97(3), 1086–1095. DOI:10.1093/jee/97.3.1086.15279295
]Ouvrir le DOISearch in Google Scholar
[
Holec, J., Krmelova, K. & Soukup J. (2009). Intensity of occurrence of locust gall midge (Obolodiplosis robiniae), leaf miner moth (Phyllonorycter robiniella) and locust digitate miner (Parectopa robiniella) on invasive black locust tree (Robinia pseudoacacia). Česká a slovenská konference o ochrane rostlin. Brno: MZLU.
]Search in Google Scholar
[
Holoborodko, K.K., Rusynov, V.I., Loza, I.M. & Pakhomov O.Ye. (2021). Adaptive features of the Phyllonorcyter robiniella (Clemens, 1859) (Gracillariidae Stainton, 1854) population in urban ecosystems. Ukrainian Journal of Ecology, 11(2), 27–34. DOI:10.15421/2021_72.
]Ouvrir le DOISearch in Google Scholar
[
Holoborodko, K.K., Rusynov, V.I. & Seliutina, O.V. (2018). Addition to analysis of morphological parameters of mines on two invasive leaf-mining Lepidoptera species ((Parectopa robiniella (Clemens, 1863) and Phyllonorycter robiniella (Clemens, 1859)) on black locust. Problems of Bioindications and Ecology, 23(2), 134–141. DOI:10.26661/2312-2056/2018-23/2-09.
]Ouvrir le DOISearch in Google Scholar
[
Holoborodko, K., Seliutina, O., Alexeyeva, A., Brygadyrenko, V., Ivanko, I., Shulman, M., Pakhomov, O., Loza, I., Sytnyk, S., Lovynska, V., Grytsan, Y. & Bandura L. (2022). The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. International Journal of Plant Biology, 13, 223–234. DOI:10.3390/ijpb13030019.
]Ouvrir le DOISearch in Google Scholar
[
Khromykh, N.O., Lykholat, Y.V., Shupranova, L.V., Kabar, A.M., Didur, O.O. & Kulbachko U.L. (2018). Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138. DOI:10.1542/011821.
]Ouvrir le DOISearch in Google Scholar
[
Kirichenko, N., Augustin, S. & Kenis M. (2019). Invasive leafminers on woody plants: a global review of pathways, impact, and management. J. Pestic. Sci., 92, 93–106. DOI:10.1007/s10340-018-1009-6.
]Ouvrir le DOISearch in Google Scholar
[
Konaikova, V.O. & Vakarenko O.V. (2020). The Alien Fraction of the Woody Flora of Yelanetskyi Step Nature Reserve, Southern Ukraine. Ekológia (Bratislava), 39(4), 322–332. DOI: 10.2478/eko-2020-0026.
]Ouvrir le DOISearch in Google Scholar
[
Korshykov, I.I., Boyko, L.I., Krasnoshtan, O.V., Suslova, O.P. & Mazur A.Yu. (2018). Diversity and viability of tree species of street plantations in Kryvyi Rih (in Ukrainian). ScienceRise: Biological Science, 13(3), 534–542. DOI:10.15587/2519-8025.2018.133186.
]Ouvrir le DOISearch in Google Scholar
[
Le Gall, M. & Behmer S.T. (2014). Effects of Protein and Carbohydrate on an Insect Herbivore: The Vista from a Fitness Landscape. Integrative and Comparative Biology, 54(5), 942–954. DOI:10.1093/icb/icu102.25070074
]Ouvrir le DOISearch in Google Scholar
[
Liu, Z., Mo, K., Fei, S., Zu, Y. & Yang L. (2017). Efficient approach for the extraction of proanthocyanidins from Cinnamomum longepaniculatum leaves using ultrasonic irradiation and an evaluation of their inhibition activity on digestive enzymes and antioxidant activity in vitro. J. Sep. Sci., 40(15), 3100–3113. DOI:10.1002/jssc.201700342.28590026
]Ouvrir le DOISearch in Google Scholar
[
Lukovičová, M., Balanac, Z. & David S. (2021). Changes in habitat conditions of invaded forest communities in Podunajská Nížina and the impact of non-native species on biodiversity (SW Slovakia). Ekológia (Bratislava), 40(4), 364–378. DOI: 10.2478/eko-2021-0038.
]Ouvrir le DOISearch in Google Scholar
[
Mattson, W.J. (1980). Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst., 11, 119–161.DOI: 10.1146/annurev.es.11.110180.001003.
]Ouvrir le DOISearch in Google Scholar
[
McHale, L., Tan, X., Koehl, P. & Michelmore R.W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology, 7(4), 212. DOI:10.1186/gb-2006-7-4-212.155799216677430
]Ouvrir le DOISearch in Google Scholar
[
Meinzer, F.C., Lachenbruch, B. & Dawson T.E. (2011). Size- and age-related changes in tree structure and function. Berlin, Heidelberg: Springer.10.1007/978-94-007-1242-3
]Search in Google Scholar
[
Meriño-Cabrera, Y., Zanuncio, J.C., da Silva, R.S., Solis-Vargas, M., Cord-eiro, G., Rainha, F.R., Campos, W.G., Picanço, M.C. & de Almeida Oliveira M.G. (2018). Biochemical response between insects and plants: an investigation of enzyme activity in the digestive system of Leucoptera coffeella (Lepidoptera: Lyonetiidae) and leaves of Coffea arabica (Rubiaceae) after herbivory. Ann. Appl. Biol., 172(2), 236–243. DOI:10.1111/aab.12416.
]Ouvrir le DOISearch in Google Scholar
[
Montecchiari, S., Tesei, G., & Allegrezza M. (2020). Effects of Robinia pseudoacacia coverage on diversity and environmental conditions of central-northern Italian Quercus pubescents sub-Mediterranean forests (HABITAT CODE 91AA*). Threshold Assessment, 10, 33–54. DOI: 10.13133/2239-3129/16447.
]Ouvrir le DOISearch in Google Scholar
[
Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vila M. (2018). More than ‘‘100 worst’’ alien species in Europe. Biol. Invasions, 20, 1611–1621 DOI: 10.1007/s10530-017-1651-6.
]Ouvrir le DOISearch in Google Scholar
[
Nicolescu, V., Rédei, K. & Mason W.L. (2020). Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forest Resources, 31(4), 1081–1101. DOI: 10.1007/s11676-020-01116-8).
]Ouvrir le DOISearch in Google Scholar
[
Paterska, M., Bandurska, H., Wysłouch, J., Molińska-Glura, M. & Moliński K. (2017). Chemical composition of horse-chestnut (Aesculus) leaves and their susceptibility to chestnut leaf miner Cameraria ohridella Deschka & Dimić. Acta Physiol. Plant., 105 (39), 1–16. DOI:10.1007/S11738-017-2404-Y.
]Ouvrir le DOISearch in Google Scholar
[
Polle, A. & Rennenberg H. (2019). Physiological responses to abiotic and biotic stress in forest trees. Forests, 10(9), 711. DOI: 10.3390/f10090711.
]Ouvrir le DOISearch in Google Scholar
[
Puchałka, R., Dyderski, M. K, Vítková. M., Sádlo, J., Klisz, M., Netsvetov, M., Prokopuk, Yu., Matisons, R., Mionskowski, M., Wojda, T., Koprowski, M. & Jagodziński A.M. (2021). Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 27(8), 1587–1600. DOI: 10.1111/gcb.15486.33336522
]Ouvrir le DOISearch in Google Scholar
[
Rangasamy, M., Rathinasabapathi, B., Mcauslane, H.J., Cherry, R.H. & Nagata R.T. (2009). Role of leaf sheath lignification and anatomy in resistance against southern chinch bug (Hemiptera: Blissidae) in St. Augustine-grass. J. Econ. Entomol., 102(1), 432–439. DOI: 10.1603/029.102.0156.19253665
]Ouvrir le DOISearch in Google Scholar
[
Rаnieri, А., Cаstаgnа, А., Bаldаm, В. & Soldаtini G.F. (2001). Iron deficiency differently аffects peroxidаse isoforms in sunflower. J. Exp. Bot., 52(354), 25–35.10.1093/jexbot/52.354.25
]Search in Google Scholar
[
Rumlerová, Z., Vilà, M., Pergl, J., Nentwig, W. & Pyšek P. (2016). Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biol. Invasion, 18(12), 3697–3711. DOI: 10.1007/s10530-016-1259-2.
]Ouvrir le DOISearch in Google Scholar
[
Seliutina, O.V., Shupranova, L.V., Holoborodko, K.K., Shulman, M.V. & Bobylev Y.P. (2020). Effect of Cameraria ohridella on accumulation of proteins, peroxidase activity and composition in Aesculus hippocastanum leaves. Regulatory Mechanisms in Biosystems, 11(2), 299–304. DOI: 10.15421/022045.
]Ouvrir le DOISearch in Google Scholar
[
Shvydenko, I.M., Stankevych, S.V., Goroshko, V.V., Bulat, A.G., Cherkis, T.M., Zabrodina, I.V., Lezhenina, I.P. & Baidyk H.V. (2021). Adventitious leaf miner Parectopa robiniella Clemens, 1863 and Phyllonorycter robiniella Clemens, 1859 on a black locust tree in the Kharkiv region. Ukrainian Journal of Ecology, 11(7), 22–32. DOI: 10.15421/2021_238.
]Ouvrir le DOISearch in Google Scholar
[
Singh, H., Dixit, S., Verma, P.C. & Singh P.K. (2013). Differential peroxidase activities in three different crops upon insect feeding. Plant Signal and Behaviour, 8(10), 1–7. DOI: 10.4161/psb.25615.400259423857346
]Ouvrir le DOISearch in Google Scholar
[
Shupranova, L.V., Holoborodko, K.K., Seliutina, O.V. & Pakhomov O.Y. (2019). The influence of Cameraria ohridella (Lepidoptera, Gracillariidae) on the activity of the enzymatic antioxidant system of protection of the assimilating organs of Aesculus hippocastanum in an urbogenic environment. Biosystems Diversity, 27(3), 238–243. DOI:10.15421/011933.
]Ouvrir le DOISearch in Google Scholar
[
Sytnyk, S., Lovynska, V. & Lakyda I. (2017). Foliage biomass qualitative indices of selected forest forming tree species in Ukrainian Steppe. Folia Oecologica, 44 (1), 38–45. DOI:10.1515/foecol-2017-0005.
]Ouvrir le DOISearch in Google Scholar
[
Taggar, G.K., Gill, R.S., Gupta, A.K. & Sandhu J.S. (2012). Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling & Behavior, 7(10), 1321–1329. DOI: 10.4161/psb.21435.349342022902801
]Ouvrir le DOISearch in Google Scholar
[
Takashima, Y., Suzuki, M., Ishiguri, F., Iizuka, K., Yoshizawa, N. & Yokota S. (2013). Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No. 8 against canker-rot fungus Inonotus obliquus strain IO-U1. Plant Biotechnology, 30(2), 199–205. DOI: 10.5511/plantbiotechnology.13.0312b.
]Ouvrir le DOISearch in Google Scholar
[
Toledo, C.A.L., Ponce, F.S., Oliveira, M.D., Aires, E.S., Júnior, S.S., Lima, G.P.P. & Oliveira R.C.O. (2021). Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. Insects, 12, 1105. DOI: 10.3390/insects12121105.870704834940193
]Ouvrir le DOISearch in Google Scholar
[
Turfan, N., Alay, M. & Sariyildiz T. (2018). Effect of tree age on chemical compounds of ancient Anatolian black pine (Pinus nigra subsp. pallasiana) needles in Northwest Turkey. Forest – Biogeosciences and Forestry, 11(3), 406–410. DOI: 10.3832/ifor2665-011.
]Ouvrir le DOISearch in Google Scholar
[
Vítková, М., Müllerová, J., Sádlo, J. & Pergl J. (2017). Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag., 384, 287–302. DOI:10.1016/j.foreco.2016.10.057.614316730237654
]Ouvrir le DOISearch in Google Scholar
[
Vítková, M., Sádlo, J., & Roleček J. (2020). Robinia pseudoacacia – dominated vegetation types of Southern Europe: Species composition, history, distribution and management. Sci. Total Environ., 707, 134857. DOI: 10.1016/j.scitotenv.2019.1348578.
]Ouvrir le DOISearch in Google Scholar
[
Wagner, V., Chytrý, M., Jiménez-Alfaro, B., Pergl, J., Hennekens, S., Biurrun, I. & Pyšek P. (2017). Alien plant invasions in European woodlands. Divers. Distrib., 23(9), 969–981. DOI: 10.1111/ddi.12592
]Ouvrir le DOISearch in Google Scholar
[
Wilkaniec, A., Borowiak-Sobkowiak, B., Irzykowska, L., Breś, W., Świerk D., Pardela, L., Durak, R., Środulska-Wielgus, J. & Wielgus K. (2021). Biotic and abiotic factors causing the collapse of Robinia pseudoacacia L. veteran trees in urban environments. PLoS One, 16(1), e0245398. DOI:10.1371/journal.pone.0245398.781699433471798
]Ouvrir le DOISearch in Google Scholar
[
Zhao, H., Sun, X., Xue, M., Zhang, X. & Li Q. (2016). Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: Catalase may play a dominant role. PLoS ONE, 11, e0165454. DOI: 10.1371/journal.pone.0165454.508279927788203
]Ouvrir le DOISearch in Google Scholar
[
Zogli, P., Alvarez, S., Naldrett, M.J., Palmer, N.A., Koch, K.G., Pingault, L., Bradshaw, J.D., Twigg, P., Heng-Moss, T.M., Louis, J. & Sarath G. (2020). Greenbug (Schizaphis graminum) herbivory significantly impacts protein and phosphorylation abundance in switchgrass (Panicum virgatum). Scientific Reports, 10, 14842 DOI: 10.1038/s41598-020-71828-8.748118232908168
]Ouvrir le DOISearch in Google Scholar
[
Zverkovskyi, V.M., Sytnyk, S.A., Lovynska, V.M., Kharytonov, M.M. & Mykolenko S.Yu. (2017). Remediation potential of forest-forming species in the reclamation planting. Ukrainian Journal of Ecology, 7(3), 64–72. DOI:10.15421/2017_50.
]Ouvrir le DOISearch in Google Scholar