À propos de cet article

Citez

[1] Directive EU 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001. Search in Google Scholar

[2] Van D, Fujuwara T, Leu Tho B, Toan P, Minh G. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ Eng Res. 2020;25(1):1-17. DOI: 10.4491/eer.2018.334.10.4491/eer.2018.334 Search in Google Scholar

[3] Appels L, Lauwers J, Degréve J, Helsen L, Lievens B, Willems K. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sust Energy Rev. 2011;15(9):4295-301. DOI: 10.1016/j.rser.2011.07.121.10.1016/j.rser.2011.07.121 Search in Google Scholar

[4] Shahbaz M, Ammar M, Zou D, Korai RM, Li X. An insight into the anaerobic co-digestion of municipal solid waste and food waste: influence of co-substrate mixture ratio and substrate to inoculum ratio on biogas production. Appl Biochem Biotechnol. 2019;187(4):1356-70. DOI: 10.1007/s12010-018-2891-3.10.1007/s12010-018-2891-3 Search in Google Scholar

[5] Geršl M, Kanduč T, Matýsek D, Šotnar M, Mareček J. The role of mineral phases in the biogas production technology. Ecol Chem Eng S. 2018;25(1):51-9. DOI: 10.1515/eces-2018-0003.10.1515/eces-2018-0003 Search in Google Scholar

[6] Komilis D, Barrena R, Grando RL, Vogiatzi V, Sánchez A, Font X. A state of the art literature review on anaerobic digestion of food waste: influential operating parameters on methane yield. Rev Environ Sci Biotechnol. 2017;16(2):347-60. DOI: 10.1007/s11157-017-9428-z.10.1007/s11157-017-9428-z Search in Google Scholar

[7] Braber K. Anaerobic digestion of municipal solid waste: A modern waste disposal option on the verge of breakthrough. Biomass Bioenergy. 1995; 9(1-5):365-76. DOI: 10.1016/0961-9534(95)00103-4.10.1016/0961-9534(95)00103-4 Search in Google Scholar

[8] Wrońska I, Cybulska K. Quantity and quality of biogas produced from the poultry sludge optimized by filamentous fungi. Ecol Chem Eng. S. 2018;25(3):395-404. DOI: 10.1515/eces-2018-0027.10.1515/eces-2018-0027 Search in Google Scholar

[9] Gruber-Brunhumer MR, Montgomery M, Nussbaumer M, Schoeppa T, Zohard E, Mucciod M, et al. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. J Biotechnol. 2019;295:80-9. DOI: 10.1016/j.jbiotec.2019.02.004.10.1016/j.jbiotec.2019.02.00430853635 Search in Google Scholar

[10] Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L. The anaerobic digestion of solid organic waste. Waste Manage. 2011;31(8):1737-44. DOI: 10.1016/j.wasman.2011.03.021.10.1016/j.wasman.2011.03.02121530224 Search in Google Scholar

[11] Panigrahi S, Dubey B. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energy. 2019;143:779-97. DOI: 10.1016/j.renene.2019.05.040.10.1016/j.renene.2019.05.040 Search in Google Scholar

[12] Andersen L, Lamp A, Dieckmann C, Baetge S, Schmidt L, Kaltschmitt M. Biogas plants as key units of biorefinery concepts: Options and their assessment. J Biotechnol. 2018; 283:130-9. DOI: 10.1016/j.jbiotec.2018.07.041.10.1016/j.jbiotec.2018.07.041 Search in Google Scholar

[13] Angelidaki I, Ellegaard L. Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends. Appl Biochem Biotechnol. 2003;109(1-3):95-106. DOI: 10.1385/ABAB:109:1-3:95.10.1385/ABAB:109:1-3:95 Search in Google Scholar

[14] Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energy Rev. 2011;15(1):821-6. DOI: 10.1016/j.rser.2010.07.042.10.1016/j.rser.2010.07.042 Search in Google Scholar

[15] Wilkie CA, Riedesel KJ, Owens MJ. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy. 2000;19(2):63-102. DOI: 10.1016/S0961-9534(00)00017-910.1016/S0961-9534(00)00017-9 Search in Google Scholar

[16] Moestedt J, Påledal S, Schnürer A, Nordell E. Biogas production from thin stillage on an industrial scale -Experience and optimisation. Energies. 2013;6(11):5642-55. DOI: 10.3390/en6115642.10.3390/en6115642 Search in Google Scholar

[17] Drosg B, Fuchs W, Meixner K, Waltenberger R, Kirchmayr R, Braun R et al. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants. Water Sci Technol. 2013;67(3):494-505. DOI: 10.2166/wst.2012.574.10.2166/wst.2012.574 Search in Google Scholar

[18] Oh ST, Martin AD. Glucose contents in anaerobic ethanol stillage digestion manipulate thermodynamic driving force in between hydrogenophilic and acetoclastic methanogens. Chem Eng J. 2014;243:526-36. DOI: 10.1016/j.cej.2013.12.085.10.1016/j.cej.2013.12.085 Search in Google Scholar

[19] Fuess LT, Garcia ML. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manage. 2015;162:102-14. DOI: 10.1016/j.jenvman.2015.07.046.10.1016/j.jenvman.2015.07.04626233583 Search in Google Scholar

[20] Schmidt T, Pröter J, Scholwin F, Nelles M. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems. Biomass Bioenergy. 2013;55:285-90. DOI: 10.1016/j.biombioe.2013.02.010.10.1016/j.biombioe.2013.02.010 Search in Google Scholar

[21] Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: Characterization and treatment. Sci Total Environ. 2013;385-96. DOI: 10.1016/j.scitotenv.2012.12.038.10.1016/j.scitotenv.2012.12.03823376111 Search in Google Scholar

[22] Perle M, Kimchie S, Shelef G. Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res. 1995;29(6):1549-54. DOI: 10.1016/0043-1354(94)00248-6.10.1016/0043-1354(94)00248-6 Search in Google Scholar

[23] Damasceno FRC, Freire DMG, Cammarota MC. Impact of the addition of an enzyme pool on an activated sludge system treating dairy wastewater under fat shock loads. J Chem Technol Biotechnol. 2008;83(5):730-8. DOI: 10.1002/jctb.1863.10.1002/jctb.1863 Search in Google Scholar

[24] Erdirencelebi D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: influence of recycle. J Chem Technol Biotechnol. 2011;86(4):525-33. DOI: 10.1002/jctb.2546.10.1002/jctb.2546 Search in Google Scholar

[25] Tawfik A, Sobhey M, Badawy M. Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination. 2008;227(1-3):167-77. DOI: 10.1016/j.desal.2007.06.023.10.1016/j.desal.2007.06.023 Search in Google Scholar

[26] Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A. Study on biogas production by anaerobic digestion of garden-waste. Fuel. 2012;95:495-8. DOI: 10.1016/j.fuel.2011.11.006.10.1016/j.fuel.2011.11.006 Search in Google Scholar

[27] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresour Technol. 2008;99(10):4044-64. DOI: 10.1016/j.biortech.2007.01.057.10.1016/j.biortech.2007.01.057 Search in Google Scholar

[28] Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol. 2005;26(3):329-40. DOI: 10.1080/09593332608618563.10.1080/09593332608618563 Search in Google Scholar

[29] Latif MA, Mehta CM, Batstone DJ. Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res. 2017;113:42-9. DOI: 10.1016/j.watres.2017.02.002.10.1016/j.watres.2017.02.002 Search in Google Scholar

[30] Lin JG, Chang CN, Chang SC. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresour Technol. 1997;62(3):85-90. DOI: 10.1016/S0960-8524(97)00121-1.10.1016/S0960-8524(97)00121-1 Search in Google Scholar

[31] Salehian P, Karimi K, Zilouei H, Jeihanipour A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel. 2013;106:484-9. DOI: 10.1016/j.fuel.2012.12.092.10.1016/j.fuel.2012.12.092 Search in Google Scholar

[32] Ali S, Hua B, Huang JJ, Droste RL, Zhou Q, Zhao W, et al. Effect of different initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population. Bioresour Technol. 2019;289. DOI: 10.1016/j.biortech.2019.121579.10.1016/j.biortech.2019.12157931228742 Search in Google Scholar

[33] Gupta VK, Mittal A, Malviya A, Mittal J. Adsorption of carmoisine A from wastewater using waste materials - Bottom ash and deoiled soya. J Colloid Interface Sci. 2009;335(1):24-33. DOI: 10.1016/j.jcis.2009.03.056.10.1016/j.jcis.2009.03.05619423127 Search in Google Scholar

[34] Yin C, Shen Y, Zhu N, Huang Q, Lou Z, Yuan H. Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration. Appl Energy. 2018;215:503-11. DOI: 10.1016/j.apenergy.2018.02.056.10.1016/j.apenergy.2018.02.056 Search in Google Scholar

[35] Fialová J, Hybská H, Mitterpach J, Samešová D, Kovalíček J, Surový J. et al. Bottom ash from municipal solid waste incineration. Basic parameters and ecotoxicological properties. Environ Prot Eng. 2019;45(3):113-26. DOI: 10.37190/epe190308.10.37190/epe190308 Search in Google Scholar

[36] ISO 10390:2005. Soil quality - Determination of pH. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=99350. Search in Google Scholar

[37] EN 14346. Characterization of waste - Calculation of dry matter by determination of dry residue or water content, 2006, 24. Available from: https://www.en-standard.eu/din-en-14346-characterization-of-waste-calculation-of-dry-matter-by-determination-of-dry-residue-or-water-content/. Search in Google Scholar

[38] EN 15169:2007. Characterization of waste - Determination of loss on ignition in waste, sludge and sediments. Available from: https://www.en-standard.eu/din-en-15169-characterization-of-waste-determination-of-loss-on-ignition-in-waste-sludge-and-sediments/. Search in Google Scholar

[39] ISO 6060:1989. Water quality. Determination of the chemical oxygen demand. Available from: https://www.iso.org/standard/12260.html. Search in Google Scholar

[40] ISO 5815:1989 (modified) Water quality. Determination of biochemical oxygen demand after n days (BODn). Part 2: Method for undiluted samples. Available from: https://v1.cecdn.yun300.cn/site_1809120263/ISO%2005815-2-20031547185585637.pdf. Search in Google Scholar

[41] EN 15309:2007. Characterization of waste and soil - Determination of elemental composition by X-ray fluorescence. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=104563. Search in Google Scholar

[42] EN 16192:2012. Characterization of waste. Analysis of eluates. Available from: https://www.en-standard.eu/din-en-16192-characterization-of-waste-analysis-of-eluates/. Search in Google Scholar

[43] EN ISO 11734:1998. Water quality. Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge. Method by measurement of the biogas production. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=79120. Search in Google Scholar

[44] Sayedin F, Kermanshahi-Pour A, He QS. Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio. Renew Energy. 2019;135:975-83. DOI: 10.1016/j.renene.2018.12.084.10.1016/j.renene.2018.12.084 Search in Google Scholar

[45] Comino E, Riggio VA, Rosso M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol. 2012;114:46-53. DOI: 10.1016/j.biortech.2012.02.090.10.1016/j.biortech.2012.02.09022444637 Search in Google Scholar

[46] Kavacik B, Topaloglu B. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy. 2010;34(9):1321-9. DOI: 10.1016/j.biombioe.2010.04.006.10.1016/j.biombioe.2010.04.006 Search in Google Scholar

[47] Lo HM, Kurniawan TA, Sillanpää MET, Pai TY, Chiang CF, Chao KP, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour Technol. 2010;101(16):6329-35. DOI: 10.1016/j.biortech.2010.03.048.10.1016/j.biortech.2010.03.04820400299 Search in Google Scholar

[48] Yin C, Shen Y, Yu Y, Yuan H, Lou Z, Zhu N. In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen Adaption and CO2 sequestration. Bioresour Technol. 2019;282:1-8. DOI: 10.1016/j.biortech.2019.02.110.10.1016/j.biortech.2019.02.11030844515 Search in Google Scholar

[49] Lo HM, Chiu HY, Lo SW, Lo FC. Effects of different SRT on anaerobic digestion of MSW dosed with various MSWI ashes. Bioresour Technol. 2012;125:233-8. DOI: 10.1016/j.biortech.2012.08.084.10.1016/j.biortech.2012.08.08423026339 Search in Google Scholar

[50] Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008;99(17):7928-40. DOI: 10.1016/j.biortech.2008.02.044.10.1016/j.biortech.2008.02.04418406612 Search in Google Scholar

[51] Latif MA, Mehta CM, Batstone DJ. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res. 2015;81:288-93. DOI: 10.1016/j.watres.2015.05.062.10.1016/j.watres.2015.05.06226081435 Search in Google Scholar

[52] Ponsá S, Ferrer I, Vázquez F, Font X. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55°C) of sewage sludge: Influence of pH and solid content. Water Res. 2008; 42(14):3972-80. DOI: 10.1016/j.watres.2008.07.002.10.1016/j.watres.2008.07.00218687452 Search in Google Scholar

[53] Sanberg M, Ahring BK. Anaerobic treatment of fish meal process wastewater in a UASB reactor at high pH. Appl Microbiol Biotechnol. 1992;36(6):800-4. DOI: 10.1007/BF00172198.10.1007/BF00172198 Search in Google Scholar

eISSN:
2084-4549
Langue:
Anglais