À propos de cet article

Citez

Hwang BJ, Santhanam R, Lin YL. Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochim Acta. 2001;46:2843-53. DOI: 10.1016/S0013-4686(01)00495-9. Search in Google Scholar

Kołodziejczyk K, Miękoś E, Zieliński M, Jaksender M, Szczukocki D, Czarny K, et al. Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions. J Solid State Electrochem. 2018;22:1629-47. DOI: 10.1007/s10008-017-3875-x. Search in Google Scholar

Palomar-Pardave M, Scharifker BR, Arce EM, Romero-Romo M. Nucleation and diffusion-controlled growth of electroactive centers reduction of protons during cobalt electrodeposition. Electrochim Acta. 2005;50:4736-45. DOI: 10.1016/j.electacta.2005.03.004. Search in Google Scholar

Krause A, Uhlemann M, Gebert A, Schultz L. A study of nucleation, growth, texture and phase formation of electrodeposited cobalt layers and the influence of magnetic fields. Thin Solid Films. 2006;1694-700. DOI: 10.1016/j.tsf.2006.06.003. Search in Google Scholar

Zubar TI, Sharko SA, Tishkevich DI, Kovaleva NN, Vinnik DA, Gudkova SA, et al. Anomalies in Ni-Fe nanogranular films growth. Alloy Compd. 2018;20:2306-15. DOI: 10.1016/j.jallcom.2018.03.245. Search in Google Scholar

Zubar TI, Fedosyuk VM, Trukhanov SV, Tishkevich DI, Michels D, Lyakhov D, et al. Method of surface energy investigation by lateral AFM: application to control growth mechanism of nanustructured NiFe films. Sci Rep-UK. 2020;10:14411. DOI: 10.1038/s41598-020-71416-w. Search in Google Scholar

Dragos O, Chiriac H, Lupu N, Grigoras M, Tabakovic I. Anomalous codeposition of fcc NiFe nanowires with 5-55% Fe and their morphology, crystal structure and magnetic properties. J Electrochem Soc. 2016;163:D83-94. DOI: 10.1149/2.0771603jes. Search in Google Scholar

Ohba M, Scarazzato T, Espinosa DCR, Panossian Z. Study of metal electrodeposition by means of simulated and experimental polarization curves: Zinc deposition on steel electrodes. Electrochim Acta. 2019;309:86-103. DOI: 10.1016/j.electacta.2019.04.074. Search in Google Scholar

Kuru H, Colak Aytekin N, Köckar H, Haciismailoğlu M, Alper M. Effect of NiFe layer thickness on properties of NiFe/Cu superlattices electrodeposited on titanium substrate. J Mater Sci-Mater EL. 2019;30:17879-89. DOI: 10.1007/s10854-019-02140-z. Search in Google Scholar

Fazli S, Bahrololoom ME. Electrodeposition of nanostructured permalloy and permalloy-magnetite composite coatings and investigation of their magnetic properties. Metall Mater Trans A. 2016;47A. DOI: 10.1007/s11661-016-3575-7. Search in Google Scholar

Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization - a review. Sci Technol Adv Mater. 2008;9:043001. DOI: 10.1088/1468-6996/9/4/043001. Search in Google Scholar

Tudela I, Zhang Y, Pal M, Kerr I, Mason TJ, Cobley AJ. Ultrasound-assisted electrodeposition of nickel: Effect of ultrasonic power on the characteristics of thin coatings. Surf Coat Technol. 2015;264:49-59. DOI: 10.1016/j.surfcoat.2015.01.020. Search in Google Scholar

Nurjaman SF, Aziz N. Optimization of tin magneto electrodeposition under additive electrolyte influence using Taguchi method application. Mater Sci Forum. 2016;860:85-91. DOI: 10.4028/www.scientific.net/MSF.860.85. Search in Google Scholar

Rousse C, Msellak K, Fricoteaux P, Merienne E, Chopart J-P. Magnetic and electrochemical studies on electrodeposited Ni-Fe alloys. Magnetohydrodynamics. 2006;42:371-8. DOI: 10.22364/mhd.42.4.3 Search in Google Scholar

Gong J, Riemer S, Kautzky M, Tabakovic IJ. Composition gradient, structure, stress, roughness and magnetic properties of 5-500 nm thin NiFe films obtained by electrodeposition. Magn Magn Mater. 2016;398:64-9. DOI: 10.1016/j.jmmm.2015.09.036. Search in Google Scholar

Gamburg YD, Zangari G. Theory and Practice of Metal Electrodeposition. New York, Dordrecht, Heidelberg, London: Springer; 2011. ISBN: 9781441996688. DOI: 10.1007/978-1-4419-9669-5. Search in Google Scholar

Monzon LMA, Coey JMD. Magnetic fields in electrochemistry: The Lorentz forces. A mini-review. Electrochem Commun. 2014;42:38-41. DOI: 10.1016/j.elecom.2014.02.006. Search in Google Scholar

Asai S. Recent development and prospect of electromagnetic processing of materials. Sci Technol Adv Materials. 2000;1:191-200. DOI: 10.1016/S1468-6996(00)00016-4. Search in Google Scholar

Sedlaček M, Podgornik B, Vizintin J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol Int. 2012;48:102-12. DOI: 10.1016/j.triboint.2011.11.008. Search in Google Scholar

Sedlaček M, Gregorčič P, Podgornik B. Use of the roughness parameters Ssk and Sku to control friction -a method for designing surface texturing. Tribol Trans. 2017;60:260-6. DOI: 10.1080/10402004.2016.1159358. Search in Google Scholar

Svahn F, Kassman-Rudolphi A, Wallen E. The influence of surface roughness on friction and wear of machine element coatings. Wear. 2003;254:1092-8. DOI: 10.1016/S0043-1648(03)00341-7. Search in Google Scholar

Jiang J, Arnell RD. The effect of substrate surface roughness on the wear of DLC coatings. Wear. 2000;239:1-9. DOI: 10.1016/S0043-1648(99)00351-8. Search in Google Scholar

Yang D, Wang Q, Tang J, Xia F, Zhou W, Wen Y. Correlation analysis of roughness surface height distribution parameters and maximum mises stress. Surf. Topogr.: Metrol Prop. 2021;10:015046. DOI: 10.1088/2051-672X/ac5d6b. Search in Google Scholar

Okamoto N, Wang F, Watanabe T. Adhesion of electrodeposited copper, nickel and silver films on copper, nickel and silver substrates. J Japan Inst Metals Materials. 2004;45:3330-3. DOI: 10.2320/matertrans.45.3330. Search in Google Scholar

Persson K. Materials Data on FeNi3 (SG:221) by Materials Project. 2015. DOI: 10.17188/1190197. Search in Google Scholar

Persson K. Materials Data on FeNi (SG:123) by Materials Project. 2016. DOI: 10.17188/1197364. Search in Google Scholar

Kądziołka-Gaweł M, Zarek M, Popiel E, Chrobak A. The crystal structure and magnetic properties of selected fcc FeNi and Fe40Ni40B20 alloys. A. Phys Pol A. 2009;117:412-4. DOI: 10.12693/APhysPolA.117.412. Search in Google Scholar

Trong DN, Long VC. Effects of number of atoms, shell thickness, and temperature on the structure of Fe nanoparticles amorphous by molecular dynamics method. Appl Mech Mater. 2021;6894514:1-12. DOI: 10.1155/2021/9976633. Search in Google Scholar

Bokuniaeva AO, Vorokh AS. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J Phys: Conf Ser. 2019;1410:012057. DOI: 10.1088/1742-6596/1410/1/012057. Search in Google Scholar

Białostocka A, Klekotka U, Kalska-Szostko B. Modulation of iron-nickel layers composition by an external magnetic field. Chem Eng Commun. 2020;206:804-14. DOI: 10.1080/00986445.2018.1528239. Search in Google Scholar

Egbu J, Ohodnicki Jr PR, Baltrus JP, Talaat A, Wright RF, McHenry ME. Analysis of surface roughness and oxidation of FeNi-based metal amorphous nanocomposite alloys. J All Com. 2022;912:165155. DOI: 10.1016/j.allcom.2022.165155. Search in Google Scholar

eISSN:
2084-4506
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Chemistry, other