Accès libre

Study of Heat Transfer and Flow Mechanism in Circular Backward-Facing Step Considering Ferrofluid Flow Under Magnetic Field Effect

 et   
30 août 2024
À propos de cet article

Citez
Télécharger la couverture

Abbassi H., Nassrallah S. Ben, MHD flow and heat transfer in a backward-facing step, Int. Commun. Heat Mass Transf. 34:231–237 (2007), doi:10.1016/J.ICHEATMASSTRANSFER.2006.09.010. Search in Google Scholar

Adun H., Wole-Osho I., Okonkwo E.C., Kavaz D., Dagbasi M., A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications, J. Mol. Liq. 340:116890 (2021), doi:10.1016/J.MOLLIQ.2021.116890. Search in Google Scholar

Ahmed H.E., Kherbeet A.S., Ahmed M.I., Salman B.H., Heat transfer enhancement of micro-scale backward-facing step channel by using turbulators, Int. J. Heat Mass Transf. 126: 963–973 (2018), doi:10.1016/J.IJHEATMASSTRANSFER.2018.05.082. Search in Google Scholar

Ahmed N.A., Coanda Effect: Flow Phenomenon and Applications, CRC Press (2019). Search in Google Scholar

Bahmani M.H., Sheikhzadeh G., Zarringhalam M., Akbari O.A., Alrashed A.A.A.A., Shabani G.A.S., Goodarzi M., Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger, Adv. Powder Technol. 29:273–282 (2018), doi:10.1016/J.APT.2017.11.013. Search in Google Scholar

Cadirci S., Gunes H., Heat Transfer Enhancement Behind a Backward Facing Step with Active Flow Control, J. Therm. Sci. Technol. Bilim. ve Tek. Derg. 34 (2014). Canonsburg A.D., ANSYS Fluent User ’ s Guide (2018). Search in Google Scholar

Chavan D., Pise A., Experimental Investigation of Effective Viscosity and Density of Nanofluids, Mater. Today Proc. 16:504–515 (2019), doi:10.1016/J.MATPR.2019.05.122. Search in Google Scholar

Chen L., Asai K., Nonomura T., Xi G., Liu T., A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control, Therm. Sci. Eng. Prog. 6:194–216 (2018), doi:10.1016/J.TSEP.2018.04.004. Search in Google Scholar

Dyachenko A.Y., Smul’sky Y.I., Terekhov V.I., Yarygina N.I., Turbulent mixing of small-obstacle-induced perturbations with the separated shear layer behind a backward-facing step, Thermophys. Aeromechanics 22:677–688 (2015). Search in Google Scholar

Guo G. Ming, Liu H., Zhang B., Numerical study of active flow control over a hypersonic backward-facing step using supersonic jet in near space, Acta Astronaut. 132:256–267 (2017), doi:10.1016/J.ACTAASTRO.2016.12.035. Search in Google Scholar

Gürdal M., Pazarlıoğlu H.K., Tekir M., Arslan K., Gedik E., Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect, Appl. Therm. Eng. 200:117655 (2022), doi:10.1016/J.APPLTHERMALENG.2021.117655. Search in Google Scholar

Gürsoy E., Kadir Pazarlıoğlu H., Dağdeviren A., Gürdal M., Gedik E., Arslan K., Kurt H., Energy analysis of magnetite nanofluid flowing in newly designed sudden expansion tube retrofitted with dimpled fin, Int. J. Heat Mass Transf. 199:123446 (2022), doi:10.1016/J.IJHEATMASSTRANSFER.2022.123446. Search in Google Scholar

Gürsoy E., Pazarlioğlu H.K., Gürdal M., Gedik E., Arslan K., Dağdeviren A., Investigation of magneto-convection characteristics in a sudden Expanding Channel with convex surface geometry under thermally developing flow conditions, Int. J. Numer. Methods Heat Fluid Flow (2024a). Search in Google Scholar

Gürsoy E., Pazarlıoğlu H.K., Gürdal M., Gedik E., Arslan K., Entropy generation of ferronanofluid flow in industrially designed bended dimpled tube, Therm. Sci. Eng. Prog. 37:101620 (2023), doi:10.1016/J.TSEP.2022.101620. Search in Google Scholar

Gürsoy E., Pazarlıoğlu H.K., Gürdal M., Gedik E., Arslan K., Parametric analysis of different Al2O3 nanoparticle shapes and expansion angles for sudden expanded tube regarding the first law of thermodynamics, Int. J. Therm. Sci. 197:108759 (2024b), doi:10.1016/J.IJTHERMALSCI.2023.108759. Search in Google Scholar

Hussein A.M., Sharma K.V., Bakar R.A., Kadirgama K., The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube, J. Nanomater, 2013:1–12 (2013). Search in Google Scholar

Kherbeet A.S., Safaei M.R., Mohammed H.A., Salman B.H., Ahmed H.E., Alawi O.A., Al-Asadi M.T., Heat transfer and fluid flow over microscale backward and forward facing step: A review, Int. Commun. Heat Mass Transf. 76:237–244, (2016), doi:10.1016/J.ICHEATMASSTRANSFER.2016.05.022. Search in Google Scholar

Khodadadi H., Aghakhani S., Majd H., Kalbasi R., Wongwises S., Afrand M., A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations, Int. J. Heat Mass Transf. 127:997–1012 (2018), doi:10.1016/J.IJHEATMASSTRANSFER.2018.07.103. Search in Google Scholar

Lahmar S., Kezzar M., Eid M.R., Sari M.R., Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity, Phys. A Stat. Mech. its Appl. 540:123138 (2020), doi:10.1016/J.PHYSA.2019.123138. Search in Google Scholar

Mehrez Z., El Cafsi A., Forced convection magnetohydrodynamic Al2O3–Cu/water hybrid nanofluid flow over a backward-facing step, J. Therm. Anal. Calorim. 135:1417–1427 (2019), doi:10.1007/s10973-018-7541-z. Search in Google Scholar

Pazarlıoğlu H.K., Gürsoy E., Gürdal M., Tekir M., Gedik E., Arslan K., Taşkesen E., The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins, Int. J. Mech. Sci. 246:108144 (2023), doi:10.1016/J.IJMECSCI.2023.108144. Search in Google Scholar

Shah Z., Ikramullah P. Kumam, Selim M.M., Alshehri A., Impact of nanoparticles shape and radiation on the behavior of nanofluid under the Lorentz forces, Case Stud. Therm. Eng. 26:101161 (2021), doi:10.1016/J.CSITE.2021.101161. Search in Google Scholar

Sheikholeslami M., Rashidi M.M., Ganji D.D., Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid, Comput. Methods Appl. Mech. Eng. 294:299–312 (2015), doi:10.1016/J.CMA.2015.06.010. Search in Google Scholar

Terekhov V.I., Dyachenko A.Y., Smulsky Y.J., Sunden B., Intensification of heat transfer behind the backward-facing step using tabs, Therm. Sci. Eng. Prog. 35:101475 (2022), doi:10.1016/J.TSEP.2022.101475. Search in Google Scholar

Trancossi M., An overview of scientific and technical literature on Coanda effect applied to nozzles, SAE Int. (2011), doi:doi:10.4271/2011-01-2591. Search in Google Scholar

Vafaei S., Yeager J.A., Daluga P., Scherer B., Forced convection nanofluid heat transfer as a function of distance in microchannels, Materials (Basel), 14:3021 (2021). Search in Google Scholar

Wang H., Wang H., Gao F., Zhou P., Zhai Z. (John), Literature review on pressure– velocity decoupling algorithms applied to built-environment CFD simulation, Build. Environ. 143:671–678 (2018), doi:10.1016/J.BUILDENV.2018.07.046. Search in Google Scholar

Xie W.A., Xi G.N., Fluid flow and heat transfer characteristics of separation and reattachment flow over a backward-facing step, Int. J. Refrig. 74:177–189 (2017), doi:10.1016/J.IJREFRIG.2016.10.006. Search in Google Scholar

Zdanski P.S.B., Vaz Jr M., Gargioni G.T., Convection heat transfer enhancement on recirculating flows in a backward facing step: The effects of a small square turbulence promoter, Heat Transf. Eng. 37:162–171 (2016). Search in Google Scholar