[
Abbassi H., Nassrallah S. Ben, MHD flow and heat transfer in a backward-facing step, Int. Commun. Heat Mass Transf. 34:231–237 (2007), doi:10.1016/J.ICHEATMASSTRANSFER.2006.09.010.
]Search in Google Scholar
[
Adun H., Wole-Osho I., Okonkwo E.C., Kavaz D., Dagbasi M., A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications, J. Mol. Liq. 340:116890 (2021), doi:10.1016/J.MOLLIQ.2021.116890.
]Search in Google Scholar
[
Ahmed H.E., Kherbeet A.S., Ahmed M.I., Salman B.H., Heat transfer enhancement of micro-scale backward-facing step channel by using turbulators, Int. J. Heat Mass Transf. 126: 963–973 (2018), doi:10.1016/J.IJHEATMASSTRANSFER.2018.05.082.
]Search in Google Scholar
[
Ahmed N.A., Coanda Effect: Flow Phenomenon and Applications, CRC Press (2019).
]Search in Google Scholar
[
Bahmani M.H., Sheikhzadeh G., Zarringhalam M., Akbari O.A., Alrashed A.A.A.A., Shabani G.A.S., Goodarzi M., Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger, Adv. Powder Technol. 29:273–282 (2018), doi:10.1016/J.APT.2017.11.013.
]Search in Google Scholar
[
Cadirci S., Gunes H., Heat Transfer Enhancement Behind a Backward Facing Step with Active Flow Control, J. Therm. Sci. Technol. Bilim. ve Tek. Derg. 34 (2014). Canonsburg A.D., ANSYS Fluent User ’ s Guide (2018).
]Search in Google Scholar
[
Chavan D., Pise A., Experimental Investigation of Effective Viscosity and Density of Nanofluids, Mater. Today Proc. 16:504–515 (2019), doi:10.1016/J.MATPR.2019.05.122.
]Search in Google Scholar
[
Chen L., Asai K., Nonomura T., Xi G., Liu T., A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control, Therm. Sci. Eng. Prog. 6:194–216 (2018), doi:10.1016/J.TSEP.2018.04.004.
]Search in Google Scholar
[
Dyachenko A.Y., Smul’sky Y.I., Terekhov V.I., Yarygina N.I., Turbulent mixing of small-obstacle-induced perturbations with the separated shear layer behind a backward-facing step, Thermophys. Aeromechanics 22:677–688 (2015).
]Search in Google Scholar
[
Guo G. Ming, Liu H., Zhang B., Numerical study of active flow control over a hypersonic backward-facing step using supersonic jet in near space, Acta Astronaut. 132:256–267 (2017), doi:10.1016/J.ACTAASTRO.2016.12.035.
]Search in Google Scholar
[
Gürdal M., Pazarlıoğlu H.K., Tekir M., Arslan K., Gedik E., Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect, Appl. Therm. Eng. 200:117655 (2022), doi:10.1016/J.APPLTHERMALENG.2021.117655.
]Search in Google Scholar
[
Gürsoy E., Kadir Pazarlıoğlu H., Dağdeviren A., Gürdal M., Gedik E., Arslan K., Kurt H., Energy analysis of magnetite nanofluid flowing in newly designed sudden expansion tube retrofitted with dimpled fin, Int. J. Heat Mass Transf. 199:123446 (2022), doi:10.1016/J.IJHEATMASSTRANSFER.2022.123446.
]Search in Google Scholar
[
Gürsoy E., Pazarlioğlu H.K., Gürdal M., Gedik E., Arslan K., Dağdeviren A., Investigation of magneto-convection characteristics in a sudden Expanding Channel with convex surface geometry under thermally developing flow conditions, Int. J. Numer. Methods Heat Fluid Flow (2024a).
]Search in Google Scholar
[
Gürsoy E., Pazarlıoğlu H.K., Gürdal M., Gedik E., Arslan K., Entropy generation of ferronanofluid flow in industrially designed bended dimpled tube, Therm. Sci. Eng. Prog. 37:101620 (2023), doi:10.1016/J.TSEP.2022.101620.
]Search in Google Scholar
[
Gürsoy E., Pazarlıoğlu H.K., Gürdal M., Gedik E., Arslan K., Parametric analysis of different Al2O3 nanoparticle shapes and expansion angles for sudden expanded tube regarding the first law of thermodynamics, Int. J. Therm. Sci. 197:108759 (2024b), doi:10.1016/J.IJTHERMALSCI.2023.108759.
]Search in Google Scholar
[
Hussein A.M., Sharma K.V., Bakar R.A., Kadirgama K., The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube, J. Nanomater, 2013:1–12 (2013).
]Search in Google Scholar
[
Kherbeet A.S., Safaei M.R., Mohammed H.A., Salman B.H., Ahmed H.E., Alawi O.A., Al-Asadi M.T., Heat transfer and fluid flow over microscale backward and forward facing step: A review, Int. Commun. Heat Mass Transf. 76:237–244, (2016), doi:10.1016/J.ICHEATMASSTRANSFER.2016.05.022.
]Search in Google Scholar
[
Khodadadi H., Aghakhani S., Majd H., Kalbasi R., Wongwises S., Afrand M., A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations, Int. J. Heat Mass Transf. 127:997–1012 (2018), doi:10.1016/J.IJHEATMASSTRANSFER.2018.07.103.
]Search in Google Scholar
[
Lahmar S., Kezzar M., Eid M.R., Sari M.R., Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity, Phys. A Stat. Mech. its Appl. 540:123138 (2020), doi:10.1016/J.PHYSA.2019.123138.
]Search in Google Scholar
[
Mehrez Z., El Cafsi A., Forced convection magnetohydrodynamic Al2O3–Cu/water hybrid nanofluid flow over a backward-facing step, J. Therm. Anal. Calorim. 135:1417–1427 (2019), doi:10.1007/s10973-018-7541-z.
]Search in Google Scholar
[
Pazarlıoğlu H.K., Gürsoy E., Gürdal M., Tekir M., Gedik E., Arslan K., Taşkesen E., The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins, Int. J. Mech. Sci. 246:108144 (2023), doi:10.1016/J.IJMECSCI.2023.108144.
]Search in Google Scholar
[
Shah Z., Ikramullah P. Kumam, Selim M.M., Alshehri A., Impact of nanoparticles shape and radiation on the behavior of nanofluid under the Lorentz forces, Case Stud. Therm. Eng. 26:101161 (2021), doi:10.1016/J.CSITE.2021.101161.
]Search in Google Scholar
[
Sheikholeslami M., Rashidi M.M., Ganji D.D., Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid, Comput. Methods Appl. Mech. Eng. 294:299–312 (2015), doi:10.1016/J.CMA.2015.06.010.
]Search in Google Scholar
[
Terekhov V.I., Dyachenko A.Y., Smulsky Y.J., Sunden B., Intensification of heat transfer behind the backward-facing step using tabs, Therm. Sci. Eng. Prog. 35:101475 (2022), doi:10.1016/J.TSEP.2022.101475.
]Search in Google Scholar
[
Trancossi M., An overview of scientific and technical literature on Coanda effect applied to nozzles, SAE Int. (2011), doi:doi:10.4271/2011-01-2591.
]Search in Google Scholar
[
Vafaei S., Yeager J.A., Daluga P., Scherer B., Forced convection nanofluid heat transfer as a function of distance in microchannels, Materials (Basel), 14:3021 (2021).
]Search in Google Scholar
[
Wang H., Wang H., Gao F., Zhou P., Zhai Z. (John), Literature review on pressure– velocity decoupling algorithms applied to built-environment CFD simulation, Build. Environ. 143:671–678 (2018), doi:10.1016/J.BUILDENV.2018.07.046.
]Search in Google Scholar
[
Xie W.A., Xi G.N., Fluid flow and heat transfer characteristics of separation and reattachment flow over a backward-facing step, Int. J. Refrig. 74:177–189 (2017), doi:10.1016/J.IJREFRIG.2016.10.006.
]Search in Google Scholar
[
Zdanski P.S.B., Vaz Jr M., Gargioni G.T., Convection heat transfer enhancement on recirculating flows in a backward facing step: The effects of a small square turbulence promoter, Heat Transf. Eng. 37:162–171 (2016).
]Search in Google Scholar