Accès libre

Production, Characterization, and Application of Biosurfactant From Lactobacillus plantarum OG8 Isolated From Fermenting Maize (Zea Mays) Slurry

À propos de cet article

Citez

1. Abdalsadiq, N. K. A. & Hassan, Z. (2018). Biosurfactant and antimicrobial activity of lactic acid bacteria isolated from different sources of fermented foods. Asian Journal of Pharmaceutical Research and Development, 6(2), 60-73. DOI: 10.22270/ajprd.v6i2.356 Open DOISearch in Google Scholar

2. Abdel-Mawgoud, A. M., Aboulwafa, M. M. & Hassouna, N. A. (2009). Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Applied Biochemistry and Biotechnology, 157(2), 329-345. DOI:10.1007/s12010-008-8285-1.18584127 Open DOISearch in Google Scholar

3. Adamczak, M. & Bednarski, W. (2000). Influence of medium composition and aeration on the synthesis of surfactants produced by Candida antarctica. Biotechnology Letters, 22, 313-316.10.1023/A:1005634802997 Search in Google Scholar

4. Adekilekun, J. A. & Johnson, L. (2019). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety, 184, 109-607. DOI: 10.1016/j.ecoenv.2019.10960731505408 Open DOISearch in Google Scholar

5. Adesulu-Dahunsi, A. T., Jeyaram, K., Sanni, A. I. & Banwo, K. (2018). Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ 6, e5326. DOI: 10.7717/peerj.5326. Open DOISearch in Google Scholar

6. AOAC. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists, 18th Ed. AOAC. Gaithersburg, Md., USA. DOI: 10.1002/0471740039.vec0284. Open DOISearch in Google Scholar

7. Banat, I., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M., & Fracchia, L. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, 427-444. DOI: 10.1007/s00253-010-2589-0.20424836 Open DOISearch in Google Scholar

8. Banat, I. M., Satpute, S. K., Cameotra, S. S., Pati, R. l. & Nyayani, N. V. (2014). Cost effective technologies and renewable substrates for biosurfactant production. Frontiers in Microbiology, 5, 697. DOI: 10.3389/fmicb.2014.00697.426447825566213 Open DOISearch in Google Scholar

9. Barghouthi, S.A. (2011). A universal method for the identification of bacteria based on general PCR primers. Indian Journal of Microbiology, 51(4), 430-434. DOI: 10.1007/s12088-011-0122-5.320995223024404 Open DOISearch in Google Scholar

10. Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. DOI: 10.1016/0003-2697(76)90527-3. Open DOISearch in Google Scholar

11. Chander, S., Lohitnath, C., Mukesh, T., Kumar, D. & Kalaichelvan, P. (2012). Production and characterization of biosurfactant from Bacillus subtilis MTCC441 and its evaluation to use as bioemulsifier for food bio-preservative. Advances in Applied Science Research, 3(3), 1827-1831. Search in Google Scholar

12. Chandran, P. & Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering Science and Technology, 2, 6942-6953. DOI: 10.1080/09593330.2011.587024.22629639 Open DOISearch in Google Scholar

13. Cooper, D. G & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied Environmental Microbiology, 53(2), 224-229. DOI: 10.1128/aem.53. 2.224-229.1987. Open DOISearch in Google Scholar

14. Cornea, C. P., Roming, F. I., Sicuia, O. A., Voiased, C., Zamfir, M. & Grosutudor, S. S. (2016). Biosurfactant production by Lactobacillus spp. strains isolated from Romanian traditional fermented food products. Romanian Biotechnology Letters, 21, 11312–11320. Search in Google Scholar

15. de Freitas Ferreira, J., Vieira, E. A. & Nitschke, M. (2019). The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Research International, 116, 737-744. DOI: 10.1016/j.foodres.2018.09.00530717003 Open DOISearch in Google Scholar

16. Deleu, M., Paquot, M. & Nylander T. (2008). Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes Biophysical Journal, 94, 2667-2679. DOI:10.1529/biophysj.107.114090.226711718178659 Open DOISearch in Google Scholar

17. Desai, J. D. & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47-64. DOI: 10.1128/.61.1.47-64.1997. Open DOISearch in Google Scholar

18. Dong, Y., Shu, G., Dai, C., Zhang, M. & Wan, H. (2019). Screening and identification of biosurfactant-producing lactic acid bacteria. Acta Universitatis Cibiniensis Series E: FOOD TECHNOLOGY, 23(2), 85-92. DOI: 10.2478/aucft-2019-0011. Open DOISearch in Google Scholar

19. Dong, Y., Shu, G., Dai, C., Zhang, M. & Wan, H. (2020). Effect of amino acids on the production of biosurfactant by Pediococcus acidilactici F70. Acta Universitatis Cibiniensis Series E: FOOD TECHNOLOGY, 24(1), 129-138. DOI: 10.2478/aucft-2020-0011. Open DOISearch in Google Scholar

20. Eduardo, J., Das, J., José, A., Teixeira, J. & Rodrigues, R. (2011). Biosurfactant-producing Lactobacilli: Screening, production profiles, and effect of medium composition. Applied and Environmental Soil Science. Article ID 201254. DOI: 10.1155/2011/201254. Open DOISearch in Google Scholar

21. Ennahar, S., Zendo, T., Sonomoto, K., & Ishizaki, A. (1999). Investigation of bacetriocin production and purification from Nukadoko isolates displaying anitimicrobial activity. Japanese Journal of Lactic Acid Bacteria, 10, 29-37. DOI: 10.4109/jslab1997.10.29. Open DOISearch in Google Scholar

22. Felix, A. K., Martins, J. J., Almeida, J. G., Giro, M. E., Cavalcante, K. F., Melo, V. M., Pessoa, O. D., Rocha, M. V., Goncalves, L. R. & de Santiago Aguiar, R. S. (2019). Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids Surfaces B, 175, 256-263. DOI: 10.1016/j.colsurfb.2018.11.062.30544045 Open DOISearch in Google Scholar

23. Fenibo, E. O., Ijoma, G. N., Selvarajan, R. & Chikere, C. B. (2019). Microbial surfactants: The next generation multifunctional biomolecules for application in the petroleum industry and its associated environ mental remediation. Microbial Biotechnology, 7(11), 581. DOI: 10.3390/microorganisms7110581.692086831752381 Open DOISearch in Google Scholar

24. Folch, J., Lees, M. & Stanley, G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biochemistry, 226, 497-509. DOI: 10.1016/s0021-9258(18)64849-5. Open DOISearch in Google Scholar

25. Fracchia, L., Cavallo, M., Allegrone, G. & Martinotti, M. (2010). A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Applied Microbiology and Microbial Biotechnology, 2(2), 827–837. Search in Google Scholar

26. Fracchia, L., Ceresa, C., Franzetti, A., Cavallo, M., Gandolfi, I., Van Hamme, J., Gkorezis, P., Marchant, R. & Banat I. M. (2014). Industrial applications of biosurfactants, In Biosurfactants: Production and Utilization – Processes, Technologies and Economics, Chap. 17, eds. Kosaric, N & Sukan, F. V. (Boca Raton: CRC Press). p245-260. DOI: 10.1201/b17599. Open DOISearch in Google Scholar

27. Franzetti, A., Gandolfi, I., Fracchia, L., Van Hamme, J., Gkorezis, P., Marchant, R. & Banat I. M. (2014). Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In Biosurfactants: Production and Utilization – Processes, Technologies and Economics, Chap. 17, eds. Kosaric, N & Sukan, F. V. (Boca Raton: CRC Press). p361-366. DOI: 10.1201/b17599-20. Open DOISearch in Google Scholar

28. García-Reyes, S. & Yañez-Ocampo, G. (2016). Microbial biosurfactants: Methods for their isolation and characterization. Journal of Microbiology, Biotechnology and Food Sciences, 6(1), 641-648. DOI: 10.15414/jmbfs.2016.6.1.641-648. Open DOISearch in Google Scholar

29. Gerchakov, S. M. & Hatcher, P. G. (1972). Improved technique for analysis of carbohydrates in sediment. Limnology and Oceanography, 17(6), 938-943. DOI: 10.4319/lo.1972.17.6.0938. Open DOISearch in Google Scholar

30. Ghasemi, A., Moosavi-Nasab, M., Behzadina, A. & Rezaei, M. (2018). Enhanced biosurfactat production with low-quality date syrup by Lactobacillus rhamnosus using a fed-batch fermentation. Food Science and Biotechnology, 27, 4. DOI: 10.1007/s10068-018-0366-5.608525930263844 Open DOISearch in Google Scholar

31. Ghasemi, A., Moosavi-Nasab, M., Setoodeh, P., Mesbahi, G. & Yousefi, G. (2019). Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 grown on different arbon sources: Strain screening followed by product characterization. Scientific Report. 9, 5287. DOI: 10.1038/s41598-019-41589-0.643719130918296 Open DOISearch in Google Scholar

32. Grusha, M., Jain, P., Karthik, L., Kumar, G. & Bhaskara Rao, K. (2014). Response surface methodology for optimization of biosurfactant production from Bacillus sp.VITPGMB isolated from marine water. Asian Journal of Microbiology, Biotechnology and Environmental Science. 16(1), 109-113. Search in Google Scholar

33. Gudina, E. J., Teixeira, J. A. & Rodrigues, L. R. (2010). Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces. 76, 298–304. DOI: 10.1016/j.colsurfb.2009.11.008.20004557 Open DOISearch in Google Scholar

34. Gudina, E. J., Teixeira, J. A. & Rodrigues, L. R. (2011). Biosurfactant producing Lactobacilli: screening, production profiles, and effect of medium composition. Applied and Environmental Soil Science, 54, 1-9. DOI: 10.1155/2011/201254. Open DOISearch in Google Scholar

35. Gudina, E. J., Rangarajan, V., Sen, R. & Rodrigues, L. R. (2013). Potential therapeutic applications of biosurfactants. Trends in Pharmacological Science, 34, 667–675. DOI: 10.1016/j.tips.2013.10.002.24182625 Open DOISearch in Google Scholar

36. Gudina, E. J., Fernandes, E. C., Teixeira, J. A. & Rodrigues, L. R. (2015). Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Advances, 5, 90960–90968. DOI: 10.1039/c5ra11659g. Open DOISearch in Google Scholar

37. Harrigan, F. W. & McCance, E. M. (1976). Laboratory Methods in Food and Dairy Microbiology. Academic Press, London. pp 33-200. Search in Google Scholar

38. Helmy, Q., Kardena, E.., Funamizu, N. & Wisjnuprapto (2011). Strategies toward commercial scale of biosurfactant production as potential substitute for its chemical counterparts. International Journal of Biotechnology, 12, 66-86. DOI: 10.1504/ijbt.2011.042682. Open DOISearch in Google Scholar

39. Hoque, M., Akter, F., Hossain, K., Raham, M., Billah & Islam, K. (2010) Isolation, Identification and analysis of probiotic properties of Lactobacillus spp. from selective regional yoghurts. World Journal of Dairy and Food Sciences, 5, 39-46. Search in Google Scholar

40. Hussain, A. L. & Shawakat, A. W. (2019). Production and antibacterial activity of biosurfactant from Saccharomyces cerevisiae. Journal of Physics: Conference Series, 1234, 012080. DOI: 10.1088/1742-6596/1234/1/012080. Open DOISearch in Google Scholar

41. Joshi, S., Bharucha, C. & Desai, A. (2008). Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology, 99, 4603-4608. DOI: 10.1016/j.biortech.2007.07.030.17855083 Open DOISearch in Google Scholar

42. Kamalijeet, K. & Sokhon, R. (2014). Biosurfactants produced by genetically manipulated microorganisms; challenges and opportunities, In: Biosurfactants: Production and utilization Processes, Technologies and Economics. Surfactant Science, 159, 276-284. DOI: 10.1201/b17599-6. Open DOISearch in Google Scholar

43. Kaur, S., Kaur, P., & Nagpal, R. (2015). In vitro biosurfactant production and biofilm inhibition by lactic acid bacteria isolated from fermented food products. International Journal of Probiotics and Prebiotics, 10(1), 17-22. Search in Google Scholar

44. Makkar, R., Cameotra, S. & Banat, I. (2011). Advances in utilization of renewable substrates for biosurfactant production, AMB Express, 1, 5. DOI: 10.1186/2191-0855-1-5.315990621906330 Open DOISearch in Google Scholar

45. Masci, E. (2013). Bacteria and Intestinal Health: From Infants to Adults. Milan, Italy. International Journal of Probiotics and Prebiotics, 8, 1-48. Search in Google Scholar

46. Marchant, R. & Banat, I. (2012). Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends in Biotechnology, 30, 558-565. DOI: 10.1016/j.tibtech.2012.07.003.22901730 Open DOISearch in Google Scholar

47.‘ Mbawala A. Mouafo. H. & Raeıssa, K. R. (2013). Antibacterial activity of Lactobacillus’ biosurfactants against Pseudomonas spp. isolated from fresh beef. Novus International Journal of Biotechnology and Bioscience, 2, 7-22. Search in Google Scholar

48. Mercade, M., Monleon, L. & De Andres, C. (1996). Screening and selection of surfactant-producing bacteria from waste lubricating oil. Journal of Applied Bacteriology, 81(2), 161-166. DOI: 10.1111/j.1365-2672.1996.tb04494.x. Open DOISearch in Google Scholar

49. Mnif, I. & Ghribi, D. (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture, 96(13), 4310-4320. DOI: 10.1002/jsfa.7759.27098847 Open DOISearch in Google Scholar

50. Morais, I. M., Cordeiro, A. L., Teixeira, G. S., Domingues, V. S., Nardi, R. M., Monteiro, A. S., Alves, R. J., Siqueira, E. P. & Santos, V. L. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65. Microbial Cell Factories, 16(1), 155. DOI: 10.1186/s12934-017-0769-7.560599228927409 Open DOISearch in Google Scholar

51. Moukala, M. B., Kayath, C. A., Ahombo, G., Dangui, N. P. M., Kinavouidi, D. J. K., Mouele, E. C. N. & Diatewa, M. (2019). Giving more benefits to biosurfactants secreted by lactic acid bacteria isolated from plantain wine by using Multiplex PCR Identification. Advances in Microbiology, 9, 917-930. DOI: 10.4236/aim.2019.911058. Open DOISearch in Google Scholar

52. Ndigbe, T. O., Eugene, W. C., & Usman, J. J. (2018). Screening of biosurfactant-producing bacteria isolated from River Rido, Kaduna, Nigeria. Journal of Applied Science and Environmental Management, 22(11), 1855-1861. DOI: 10.4314/jasem.v22i11.22. Open DOISearch in Google Scholar

53. Ng, S. Y., Koon, S. S., Padam B. S. & Chye, F. Y. (2015). Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian Bambangan (Mangiferapagan) CYTA-Journal of Food, 13(4), 563-572. DOI: 10.1080/19476337.2015.1020342. Open DOISearch in Google Scholar

54. Nwaguma, V., Chikere, B. & Okpokwasili, C. (2016). Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresources Bioprocessing, 3, 40.DOI: 10.1186/s40643-016-0118-4. Open DOISearch in Google Scholar

55 Olasanmi, I. O. & Thring, R. W. (2018). The role of biosurfactants in the continued drive for environmental sustainability. Sustainability, 10, 4817. DOI: 10.3390/su10124817. Open DOISearch in Google Scholar

56. Oyedeji O., Ogunbanwo S. T. & Onilude A. A. (2013). Predominant lactic acid bacteria involved in the traditional fermentation of fufu and ogi. two Nigerian fermented food products. Food and Nutrition Sciences, 4, 40-46. DOI: 10.4236/fns.2013.411a006. Open DOISearch in Google Scholar

57. Pradhan, A. & Bhattacharyya, A. (2018). An alternative approach for determining critical micelle concentration: Dispersion of ink in foam. Journal of Surfactants Detergent, 21(5), 745-750. DOI: 10.1002/jsde.12165. Open DOISearch in Google Scholar

58. Rodrigues, L., Moldes, A. Teixeira, J. & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28, 109-116. DOI: 10.1016/j.bej.2005.06.001. Open DOISearch in Google Scholar

59. Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S. & Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from Lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14, 197. DOI: 10.1186/1471-2180-14-197.423650625124936 Open DOISearch in Google Scholar

60. Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., Salgueiro, A. A. & Sarubbo, L. A. (2013). Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. Journal of Petroleum Science and Engineering, 105, 43-50. DOI: 10.1016/j.petrol.2013.03.028. Open DOISearch in Google Scholar

61. Saravanan, V. & Vijayakumar, S. (2012). Isolation and screening of biosurfactant producing microorganisms from oil contaminated soil. Journal of Academic and Industrial Research, 1(5), 264-268. Search in Google Scholar

62. Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, B. A. (2010). Methods for investigating biosurfactants and bioemulsifiers: A review. Critical Reviews in Biotechnology, 30(2), 127-144. DOI: 10.3109/07388550903427280.20210700 Open DOISearch in Google Scholar

63. Satpute, S. K., Płaza, G. A. & Banpurkar, A. G. (2017). Biosurfactants’ production from renewable natural resources: Example of innovative and smart technology in circular bioeconomy. Management System in Production Engineering, 25, 46-54. DOI: 10.1515/mspe-2017-0007. Open DOISearch in Google Scholar

64. Sharma, D. & Saharan, B. (2016). Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnology Reports, 11, 27-35. DOI: 10.1016/j.btre.2016.05.001.504230128352537 Open DOISearch in Google Scholar

65. Sharma, D., Saharan, B. S., Chauhan, N., Procha, S. & Lal, S. (2015). Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springer Plus, 4, 4. DOI: 10.1186/2193-1801-4-4.432018425674491 Open DOISearch in Google Scholar

66. Shavandi M., Mohebali, G., Haddadi, A., Shakarami, H. & Nuhi, A. (2011). Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. Strain TA6. Colloids Surface B: Biointerfaces, 82(2), 477-482. DOI: 10.1016/j.colsurfb.2010.10.005.21030223 Open DOISearch in Google Scholar

67. Siti Roha, A. M., Zainal, S., Noriham, A., Nadzirah, K. Z. (2013). Determination of sugar content in pineapple waste variety N36. International Food Research Journal, 20(4), 1941-1943. DOI: 10.1016/j.apcbee.2012.11.022. Open DOISearch in Google Scholar

68. Selvankumar, T., Govarthanan1, M. & Govindaraju, M. (2011). Endoglucanase production by Bacillus amyloliquefaciens using coffee pulp as substrate in solid state fermentation. International Journal of Pharmaceutical and Biological Science, 2(3), 355-362. Search in Google Scholar

69. Sobrinho, H. B., Luna, J. M., Rufino, R. D., Porto, A. L. & Sarubbo, L. A. (2013). Biosurfactants: classification,properties and environmental applications. Recent Developments in Biotechnology,11,1-29. Search in Google Scholar

70. Souza, E. C., Azevedo, P. O., Domínguez, J. M., Converti, A. & Oliveira, R.P. (2017). Influence of temperature and pH on the production of biosurfactant, bacteriocin and lactic acid by Lactococcus lactis CECT-4434, CyTA – Journal of Food Microbiology, 15(4), 525-530. DOI: 10.1080/19476337.2017.1306806. Open DOISearch in Google Scholar

71. Thavasi, R., Sharma, S. & Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. Journal of Petroleum and Environmental Biotechnology, 1-6. DOI: 10.4172/2157-7463.s1-001. Open DOISearch in Google Scholar

72. Trindade, L., Marques, E., Lopes, D. & Ferreira, M. (2007). Development of a molecular method for detection and identification of Xanthomonas campestris pv. Viticola. Summa Phytopathologica, 33(1), 16-23. DOI: 10.1590/s0100-54052007000100002. Open DOISearch in Google Scholar

73. Udoh, T. & Vinogradov, J. (2019). Experimental investigations of behavior of biosurfactants in brine solutions relevant to hydrocarbon reservoirs. Colloids and Interfaces, 3(1), 24.DOI: 10.3390/colloids3010024. Open DOISearch in Google Scholar

74. UmmulKhair, M. & Ainon, H. (2016). Determination of Optimum Conditions and Stability Study of Biosurfactant Produced by Bacillus subtilis UKMP-4M5. Malaysian Journal of Analytical Sciences, 20(5), 986-1000. DOI: 10.17576/mjas-2016-2005-03. Open DOISearch in Google Scholar

75. Vandana, P. & Singh, D. (2018). Review on biosurfactant production and its application. International Journal of Current Microbiology and Applied Science, 7(8), 4228-4241. DOI: 10.20546/ijcmas.2018.708.443. Open DOISearch in Google Scholar

76. Vecino, X., Rodriguez-Lopez, L., Gudina, E., Cruz, J., Moldes, A. & Rodrigues, L. (2017). Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. Journal of Industrial and Engineering Chemistry, 55, 40-49. DOI: 10.1016/j.jiec.2017.06.014. Open DOISearch in Google Scholar

77. Vernoux, J. P., Coeuret, V., Dubernet, S., Bernardeau, M. & Gueguen, M. (2003). Isolation characterization and identification of Lactobacilli focusing mainly on cheese and other dairy products. INRA and EDP Sciences, 83, 269-306. DOI: 10.1051/lait:2003019. Open DOISearch in Google Scholar

78. Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M. & Mcinerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56, 339-347. DOI: 10.1016/j.mimet.2003.11.001.14967225 Open DOISearch in Google Scholar

79. Zinjarde, S. & Pant, A. (2002). Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Journal of Basic Microbiology, 42(1), 67-73. DOI: 10.1002/1521-4028(200203)42:1<67::aidjobm67>3.0.co;2-m. Open DOISearch in Google Scholar

eISSN:
2344-150X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, other, Food Science and Technology